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Foundations of Interpretability



What is Interpretability?
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Types of Machine Learning Models

There is an explanation about how the
model is making predictions Examples:
Decision Trees, Regression Models etc.

There is no explanation with respect to
how the model is making predictions
Examples: SVMs, Random Forest, Gradient
Descent Models etc.



Explainable Al / Interpretable Machine

Learning

* Explainable Al or interpretable machine
learning: Giving explanations of Al/machine
learning models to humans with domain

knowledge
* Explanation: Why is the prediction being made?

* Explanation to Human: The explanation should

be comprehensible to humans in (i) natural
language (ii) easy to understand representations

* Domain Knowledge: The explanation should
make sense to a domain expert
[Craik 1967, Doshi-Velez 2014]
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Definitions

Definition (Comprehensibility, C(S, P))

The comprehensibility of a definition (or prOﬁram) P with respect to a human
population S is the mean accuracy with which a human s from population S
after brief study and without further sight can use P to classify new material
sampled randomly from the definition’s domain

Definition (Inspection time T (S, P))

The inspection time T of a definition (or program) P with respect to a human
population S is the mean time a human s from S spends studying P before
applying P to new material

Definition (Textual complexity, Sz(P))

The textual complexity Sz of a definition of definite program P is the sum of
]’Ehe (()jc_culgrences of predicate symbols, functions symbols and variables
ound in

[Muggleton 2018]



How interpretable are interpretable models?

e Domain

* Problems in healthcare e.g., risk of mortality have more stringent
requirement than retail e.g., placement of ads [Ahmad 2018]

* Soundness
* An explanation is Sound if it adheres to how the model works [Kuleza 2014]

 Completeness

* An explanation is Complete if it encompasses the complete extent of the
model [Kuleza 2014]

* Modality

* Until recently most interpretable large predictive time series models were not
really interpretable [Schlegel 2019]



Domain specificity of interpretations

* Describing the trained ML model in terms
of domain ontology without using terms
that are foreign to the domain where the

ML task must be solved [Kovalerchuk,
2020]

* The explanations/interpretation has to
make sense to the domain expert who is
going to use the ML model

* The same data may have different meaning

in different domains e.g., ratings in Uber vs.

Amazon
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User centricity of interpretations

* Explanations need to be in the right language and in the right context
[Doshi-Velez 2014, Druzdzel 1996]

 ELI5 Principle: Explain it like | am 5 (years old)

* Making domain sense may require sacrificing or deemphasizing
model fidelity

* Explanations should be role-based - A physician requires different
explanations as compared to a staffing planner in a hospital



Ante-Hoc vs. Post Hoc Models

Ante-Hoc (Internally Interpreted) Post-Hoc (Externally Interpreted)

* Models where the predictive * Models where the predictive

model and the explanation model and the explanation
model is the same model are different

e« ML model ained in t ¢ ML model explained in terms of
MOdet explained in terms o interpretable input data and

interpreted elements of their variables. but without
structure not only inputs interpreting the model structure



Explicit vs. Implicit Interpretations

Explicit Interpretations Implicit Interpretations
The interpretation is explicitly The interpretation needs to be
from the model output derived after the application of

additional domain knowledge
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Implicit Explanations

input x ( \ evidence for "car"

* Consider recognizing a boat in an image
Recognize an image as boat based on a NN
group of pixels that look like a mast

. . . . / evidenc:e for "boat"
* This explanation is not applicable to R(z) e

another boat in the same image since that e, | explanation
boat has no mast and requires its own for "boat [ground truth: boat

explanation. Such conceptual explanations
cannot be derived from DNN models

* In contrast, in medical imaging, if a
radiologist cannot explicitly match DNN
dominant pixels with the domain concepts
such as tumor, these pixels will not serve as
an explanation for the radiologist.



Using black-box models to explain black box
models?

input @ ( \ evidence for "car"

|

evidence for "truck"

Y

evidence for "boat"

f(z)

o . /- | explanation

for "boat" ground truth: "boat"

The dominant/salient Eixels of the image represent the mast as a
distinct feature of the boat relative to a car and a truck. This is a result

of human knowledge what is a mast that is not explicitly present in the
image



Tutorial Scope

Bayesian Models Neural Nets Ensemble Models Markov Models

&

Statistical Models Graphical Models Reinforcement Natural Language

Learning Processing
D ( P |
;\ \'/ : \F{__.e"
Expert Systems Supervised Learning Recommendation
Systems [Chang 2009]




Tutorial Scope

Bayesian Models Neural Nets Ensemble Models Markov Models

Statistical Models Graphical Models Reinforcement Natural Language
Learning Processing

Expert Systems Supervised Learning Recommendation
Systems [Chang 2009]




Discovering Visual Interpretable
Models



What is visual interpretability?

else
else

else

else
else

else

else

if  bruises=no, odor=not-in-(none,foul)
if odor=foul, gill-attachment=free,

if  gill-size=broad, ring-number=one,

" stalk-root=unknown,

' stalk-surface-above-ring=smooth,

if  stalk-root=unknown, ring-number=one,

if  bruises=foul, veil-color=white,

i stalk-shape=tapering,
ring-number=one,

if  habitat=paths,

else  (default rule)

Visual Methods
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Non-Visual Methods

if hemiplegia and age > 60

+ then stroke risk 58.9% (53.8%—63.8%)
else if cerebrovascular disorder

+ then stroke risk 47.8% (44.8%—50.7%)
else if transient ischaemic attack

+ then stroke risk 23.8% (19.5%—28.4%)
else if occlusion and stenosis of carotid artery
without infarction

 then stroke risk 15.8% (12.2%—19.6%)
else if altered state of consciousness and age > 60

+ then stroke risk 16.0% (12.2%—20.2%)
else if age < 70

* then stroke risk 4.6% (3.9%-5.4%)
else stroke risk 8.7% (7.9%-9.6%)

[Letham 2015]
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The Allure of Visual Methods

Visual Understanding
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Why Visual Thinking?

* A lot of creative thinking is visual

* Scientists who declared the fundamental role that
images played in their most creative thinking: Bohr,
Boltzmann, Einstein, Faraday, Feynman,
Heisenberg, Helmholtz, Herschel, Kekule, Maxwell,
Poincare, Tesla, Watson, Watt etc.

e Albert Einstein: “The words or the language, as
they are written or spoken, do not seem to play
any role in my mechanism of thought.”

[Thagard & Cameron, 1997; Hadamard, 1954; Shepard & Cooper, 1982]



Pre-History of Visual Thinking

Chinese and Indians knew a visual proof of the Pythagorean Theorem in
600 B.C. before it was known to the Greeks [Kulpa 1994]

Madhura Meenakshi Temple Lingxiao Pagoda of Zhengding



Pre-History of Visual Thinking

(a+b) 2 (area of the large square) = a2+b2+ab+ab=(a+b) 2
a2+b2=(a+b) 2(area of the large square) - 2ab (4 light
green triangles) = c 2(area of inner darker green
square

Thus, we follow this tradition -- moving from
visualization of solution to finding solution visually

with modern data science tools




Approaches to discovering visual methods

* We are moving from visualization of solution to finding solution
visually
* Why Visual?
To leverage human perceptual capabilities

* Why interactive?
* To leverage human abilities to adjust tasks on the fly

* Why Machine Learning?

* To leverage analytical discovery that are outside of human abilities
* We cannot see patterns in multidimensional data by a naked eye



Approaches beyond visualization of existing
models

 Components of approaches:
* Visual methods for n-D data representation
* Visual methods for model discovery in visual n-D data representations

* Methods to interpret visual data representations and models that are not
internally interpretable

* Visual methods for 2-D/3-D representation of n-D data

* Reversible/lossless/interpretable: Parallel Coordinates, Radial Coordinates,
General Line Coordinates, Shifted Paired Coordinates, Collocated Paired
Coordinates, and others.

* Non-reversible/lossy/with challenging interpretation: PCA, MDF, RadVis,
Manifolds, t-SNE and others



What is Visual Discovery?

X y class
1 0.5 1
1.1 6 2
2 1.5 1
2.2 5 2
2.8 2.8 1
3 4 2
3:5 33 1
4 3.8 1
4 2.6 2
4.5 4-7 1
5 1.8 2
5 5 1
5.5 5.5 1
6 0.8 2

What would be the best guess about a
line fitting this data?



What is Visual Discovery?

class
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What would be the best guess about a
fitting this data?

A simple linear discrimination function



What is Visual Discovery?

X y class
1 0.5 1
1.1 6 2
2 1.5 1
2.2 5 2
2.8 2.8 1
3 4 2
3:5 33 1
4 3.8 1
4 2.6 2
4.5 4-7 1
5 1.8 2
5 5 1
5.5 5.5 1
6 0.8 2
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In contrast a quick look at these data,
immediately gives a visual insight of a correct
model class of “crossing” two linear functions



Visual Discovery in 2-D
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How to do visual discovery in n-dimensions?

ID FDa FD2 FD4 FD5 FD6 FD1o FDa12 FDa5 FD16 FDa8 FD2o FD22 FD23 FD24 FD25 FD26 FD27 FD28
1 o o 2.749807 | 9.826302 | 4.067554 o o o 5.244006 o} 2.743422 ¢} o o o 6.254963 o o

2 11.51334 |9.092989 o 12.46223 o 7.597155 o o 8.940897 o o [¢} 4.268456 o o o o 1.309903
3 10.27931 0 2.075787 o 4042145 o 0 0.477713 | 3.97378 o o 2.477745 o o o 5.583099 0 7-418219
4 o 18.31495 o o o o o o 4.472742 | 4.671682 o 7.248355 | 12.11645 o o o 6.030322 o

5 14.12261 | 15.1236 |9.695051 o 0.915031 o o 6.086389 | 9.139287 o} o ¢} 8.931774 o o o o o

6 o o 5.405394 o o 2.951092 o 3.797284 | 4.576391 o o o o o 2.763756 o o 2.562996
7 o o o 8.068472 o 3.267916 o o 5.09157 |6.082168 [¢} [¢} 5.42044 o o 4.431955 | 0.415844 | 2.73227
8 6.169271 | 4.918356 | 5.566813 o o 4.884737 | 5.168666 o 5.189289 ¢} o [¢} 2.49011 o 4.750784 |2.994664 o o

9 11.64548 o (o} 12.16663 o 8.407408 o o (¢} o [¢} [¢} 4.289772 o o 4.652006 o o
10 9.957874 | 7.829115 o o o o o o 7.082694 | 8.388349 o ¢} o o o 4.706276 o 0.705345
11 9.994487| 12.3192 |3.058695 o o o 6.111047 | 0.380701 |3.904454 o 2.573056 o o o o 5.610187 o o
12 o 8.446147 | 7.506574 [¢} o 5.846259 |7.362241 | 6.557457 | 7.627757 | 9.05184 o o [¢} o 6.646436 o o o
13 13.65315 | 18.11681 | 2.457055 o 8.218276 o 5.689919 o 4.45029 | 3.213032 | 5.992753 o 11.56691 o o 7.734966 o o
14 o o o 8.710629 o [¢} o o 6.466624 o} o [¢} 3.865449 o 5.339944 | 3.943355 o o
15 11.08665 o o} 12.57808 o 8.377558 o 9.269582 o 10.28637 o o 4.141793 [¢} o 4.953615 o 0.433766
16 o o 7.32989 |9.848915 o o 6.639803 o o o o o o o o 4.288343 o o
17 o o 8.49376 o o o} 7.403671 | 9.346368 o o o o ¢} ¢} [¢} o o o
18 9.52255 o o 10.30969 o o 6.508697 o o 9.04743 o o 3.113288 o 7.667032 o o o
19 o 9.237608 |3.488988 | 7.443493 o o o o o o 0.921821 | 1.305681 o [¢} [¢} 4.447716 o 4.174564
20 o 16.78071 | 2.745921 ¢} 5.606468 o} 7.824948 o o 4.807075 | 4.454489 o} o} ¢} [¢} 7.226364 o 10.62363
21 o o 8.18506 o 0.469365 | 4.241147 o 5.823779 o o} o} o} o o o 6.475445 o 4.49432
22 9.609696|12.07202 o 6.483721 o [¢} o o o 1.554688 o 5.446015 o o o o o 9.85667
23 10.71318 o o 11.44685 o 8.097867 o 8.832153 |8.646919 o o o o o 4.705225 o o
24 6.625456 o 3.686915 | 6.715843 | 0.187058 [¢} 3.735899 | 3.55698 o o o ¢} [¢} [¢} 2.996381 | 3.700704 o o
25 9.794333 o o 9.788224 ¢} 4.599581 o o o o o ¢} ¢} [¢} ¢} 4.694789 o 010
26 10.25995 o 0 9.531824 o 1.156152 |6.604298 o 0 0 o o 6.346496 o 1.300262 o 1.869395 |4.265034




Multi-dimensional data visualization

* In high-dimensions one cannot comprehensively see data

* Methods for lossless and interpretable visualization of n-D data
in 2-D are required

e Often multidimensional data are visualized by lossy dimension
reduction (e.g., PCA) or by splitting n-D data to a set of low
dimensional data (pairwise correlation plots)

* While splitting is useful it destroys integrity of n-D data and
leads to a shallow understanding complex n-D data

* An alternative for deeper understanding of n-D data is visual
representations of n-D data in low dimensions without splitting

and loss of information is graphs not 2-D points e.g., Parallel and
Radial coordinates




Example: WBC

Benign and malignant cancer
cases overlap
Interpretation of dimensions
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[Maszczyk 2008]



Johnson-Lindenstrauss Lemma

2

]

Given 0 < ¢ < 1, aset X of m points in R”Y, and a number n > 81In(m) /e
there is a linear map f : RY — R” such that

(1 —e)llu—vl* <|[If(u) = f@)II* < 1 +e)llu—v|
forall u,v € X.

* Only a small number of arbitrary n-D points can be mapped to k-D points of
a smaller dim k that preserve n-D distances with relatively small deviations

e Reason: the 2-D visualization space does not have enough neighbors with
equal distances to represent the same n-D distances in 2-D.

* Result: the significant corruption of n-D distances in 2-D visualization



Different Formulations of the Lemma

* Defines the possible dimensions k < n such that for any set of m
points in R" there is a mapping f: R" — Rk with “similar” distances in
R" and R* between mapped points. This similarity is expressed in
terms of error0<e< 1.

* For € = 0 these distances are equal. For e=1 the distances in R¥ are
less or equal toV2 S, where S is the distance in R". This means that
distance s in R¥ will be in the interval [0, 1.42S].

* |n other words, the distances will not be more than 142% of the
original distance, i.e., it will not be much exaggerated. However, it
can dramatically diminish to 0

[Dasgupta 2003]



Theoretical limits: Preserve n-D in 2-D

Number of arbitrary Sufficient Sufficient Insufficient

* Johnson-Lindenstrauss Lemma shows dhoniee RmidBD G b
that to keep distance errors within o s s ot
about 30% for just 10 arbitrary high-
dimensional points, we need over " o o 0
1,900 dimensions, and over 4,500 o o o

200 4541 4934 4239

dimensions for 300 arbitrary points

Dimensions to support +31% of error (¢=0.1).
16000

e Visualization methods do not meet _

. 12000 /
these requirements 10000 _—

6000 /

4000 e
2000 ===

0

10 20 30 40 50 60 70 &80 90100200300

Dimensions required supporting + 31% of error €.



Approaches to Convert n-D data to 2-D data

* Lossy approach | o e
e Lossy conversion to 2-D (dimension reduction, b |
DR) e
* Point to point (n-D point to 2-D point)
* Visualization in 2-D

* Interactive discovery of 2-D patterns in
visualization

n-D data 2-D data &
* Lossless approach 2-D patterns

 Lossless conversion (visualization) to 2-D (n-D
data fully restorable from its visualization) >

* Interactive discovery of 2-D patterns on graphs
in visualization n-D data and 2-D data & n-D
n-D patterns patterns




GLC-L Algorithms for Visualization

Given: 4-D point (x,, x,,X3, X, )=(1,0.8, 1.2, 1)

Algorithm

» 4 coordinate lines at different angles Q,-Q,

* Values shown as blue lines (vectors)
* Shifting and stacking blue lines

. Ptlmlze angles Q,-Q, to separate classes
(ye

Projecting the last point to U line
Do the same for other 4-D points of blue class

Do the same for 4-D points of red class

4
4
;

X ‘22
L

1' X] O X2 X3 12 X4 1
Qi Q Qs Q

X3 : X4
Qs Q4

low | |ne



GLC-L Algorithms for Visualization
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O-D Wisconsin Breast Cancer

o ] ] . . 444 benign (blue) cases
e Critical in Medical diagnostics

and many other fields

* Explanation of patterns and
understanding patterns

* Lossless visual means

Reversible/restorable 239 malignant (red) cases

* Only one malignant (red case)
on the wrong side Predicted Class

1 2

424 208

1 238
Accruacy is:- 96.9253x

H
AN



Avoiding Occlusion with Deep Learning on
WBC data

Numeric 9-DWisconsin \ﬁ
Breast Cancer (WBC) > % A b
class 0 (1) class0 (2) class 0 (3) class0 (4) class 0 (5)
Data

\ Y \ Y \

class 0 (6) class 0 (7) class 0 (8) class 0 (9) class 0 (10)

Visualized numeric data as downscaled

25X25 pixels images USing GLC—L methOd classll 1) cIale(E) clas:l(BJ classll(fij class 1 (5)
Deep Lea rning class1 (6] class1 7) class 1 (8] class1 (9] class1 (10)
Convolutional Neural
Network (CNN) on images WBC data samples visualized in GLC-L for
. . . CNN model with the best accuracy.
(GLC-L visualization) as input

Classification accuracy 97.22%
at the level and above published in literature

Visualization
—| optimization




General Line Coordinates

X, X, X3 X, Xs Xe X,
7-D point D=(5,2,5,1,7,4,1) in Parallel Coordinates

1

R

ST IR NE R~ A

Xy Xy X3 Xy Xs X 6N

6-D (5,4,0,6,4,10) pointin
In-line Coordinates

7-D point D=(5,2,5,1,7,4,1) in
Radial Coordinates.

Two 5-D points of two classes in Sequential In-Line Coordinates.

(a) 7-D point D in General Line Coordinates with straightlines.

X X X3 X4 Xs Xs X7

(b) 7-D point D in General Line Coordinates with curvilinear

lines.
FGH )
——0—¢
X X X, X X5 X X

(c) 7-D points F-J in General Line Coordinates that forma
simple single straight line.

X X X, x, F X, X X

1 6 7

(d) 7-D points F-J in Parallel Coordinates that do not form a
simple single straight line.
7-D points in General Line Coordinates with different directions of
coordinates X1,Xz,...,X7in comparison with Parallel Coordinates.



» X

- X

General Line Coordinates ]

(a) Parallel Coordinates display. (b) Circular Coordinates display.

n-Gon (rectangular) coordinates with 6-D point (0.5, 0.6, 0.9, 0.7,
0.7,0.1).

(c) Spatially distributed objects in circular coordinates with two coordinates Xs and Xq used
as a location in 2-D and X7 is encoded by the sizes ofcircles.

1 Figure 2.5. Examples of circular coordinates in comparison with parallel coordinates.
XZT
0.5
Q
\ E
0. 0.5
Xs X )
3
=
1 1 g
(a) Point A in in 3-Gon coordi- (b) Point A in in radial coordi- 100\ ednesday 100
3
nates. nates.

X3 Wednesday

(a) Example in n-Gon coordinates with curvi- (b) Example in n-Gon coordinates with
3-D point A=(0.3, 0.7, 0.4) in 3-Gon (triangular) coordinates and in fincar edges of a graph. straight edges of'a graph.
radial coordinates.

Figure 2.6 Example of weekly stock data in n-Gon (pen4m5m)coordinates.



General Line Coordinates (GLC): 2-D

Type

Characteristics

2-D General Line Coor-
dinates (GLC)

Drawing n coordinate axes in 2-D in variety of ways: curved, parallel, unparal-
leled, collocated, disconnected, etc.

Collocated Paired Coor-
dinates (CPC)

Splitting an n-D point x into pairs of its coordinates (x1,X2),...,(Xn-1,Xn); drawing
each pair as a 2-D point in the collocated axes; and linking these points to form a
directed graph. For odd n coordinate X, is repeated to make n even.

Basic Shifted Paired
Coordinates (SPC)

Drawing each next pair in the shifted coordinate system by adding (1,1) to the
second pair, (2,2) to the third pair, (i-1, i-1) to the i-th pair, and so on. More
generally, shifts can be a function of some parameters.

2-D Anchored Paired
Coordinates (APC)

Drawing each next pair in the shifted coordinate system, i.e., coordinates shift- ed to
the location of a given pair (anchor), e.g., the first pair of a given n-D
point. Pairs are shown relative to the anchor easing the comparison with it.

2-D Partially Collocated
Coordinates (PCC)

Drawing some coordinate axes in 2D collocated and some coordinates not col-
located.

In-Line Coordinates
(ILC)

Drawing all coordinate axes in 2D located one after another on a single straight
line.

Circular and
n-Gon coordinates

Drawing all coordinate axes in 2D located on a circle or an n-Gon one after
another.

Elliptic coordinates

Drawing all coordinate axes in 2D located on ellipses.

GLC for linear functions
(GLC-L)

Drawing all coordinates in 2D dynamically depending on coefficients of the
linear function and value of n attributes.

Paired Crown Coordi-
nates (PWC)

Drawing odd coordinates collocated on the closed convex hull in 2-D and even
coordinates orthogonal to them as a function of the odd coordinate.




General Line Coordinates (GLC): 3-D

Type

Characteristics

3-D General Line Co-
ordinates (GLC)

Drawing n coordinate axes in 3-D in variety of ways: curved, parallel, unparal-
leled, collocated, disconnected, etc.

Collocated Tripled Co-
ordinates (CTC)

Splitting n coordinates into triples and representing each triple as 3-D point in the

same three axes; and linking these points to form a directed graph. If n mod 3 is not 0 then repeat the
last coordinate X, one or two times to make it 0.

Basic Shifted Tripled
Coordinates (STC)

Drawing each next triple in the shifted coordinate system by adding (1,1,1) to the second tripple, (2,2,2)
to the third tripple (i-1, i-1,i-1) to the i-th triple, and so on.
More generally, shifts can be afunction of some parameters.

Anchored Tripled Coordinates
(ATC) in 3-D

Drawing each next triple in the shifted coordinate system, i.e., coordinates shifted to the location of the
given triple of (anchor), e.g., the first triple of a given n-D
point. Triple are shown relative to the anchor easing the comparison with it.

3-D Partially Collocated
Coordinates (PCC)

Drawing some coordinate axes in 3-D collocated and some coordinates not collo-
cated.

3-D In-Line Coordinates (ILC)

Drawing all coordinate axes in 3D located one after another on a single straight
line.

In-Plane Coordinates (IPC)

Drawing all coordinate axes in 3D located on a single plane (2-D GLC embedded to 3-D).

Spherical and
polyhedron coordinates

Drawing all coordinate axes in 3D located on a sphere or a polyhedron.

Ellipsoidal coordinates

Drawing all coordinate axes in 3D located on ellipsoids.

GLC for linear func-
tions (GLC-L)

Drawing all coordinates in 3D dynamically depending on coefficients of the linear
function and value of n attributes.

Paired Crown Coordi-
nates (PWC)

Drawing odd coordinates collocated on the closed convex hull in 3-D and even
coordinates orthogonal to them as a function of the odd coordinate value.




Reversible Lossless Paired Coordinates

T Y  (4.10 AY (6,12
t
4
7 (05) KLD=(1,1)+0.6)
P!
(5:4) o (5.4)
P b >
Lo o
X » X
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(a) Collocated Paired Coordinates (b) Shifted Paired Coordinates.
6-D point (5,4,0,6,4,10) in Paired Coordinates.
e & Y Y. ¥ (0.40. 8+20. 4)=06, .2)
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(a) Collocated Paired Coordinates (b) Parallel Coordinates 0 01 0203 0405 060708 09 1
6-D point x=(x,y,x ",y ,x" ",y )=(0.2, 0.4, 0.1, 0.6, 0.4, 0.8) in
State vector x = (X,y,x,y ,x ,y ) =1(0.2,04,0.1, 0.6, 0.4, 0.8) in Anchored Paired Coordinates with numbered arrows.

Collocated Paired and Parallel Coordinates



Reversible lossless
Paired Coordinates

(b) ©

n-D points as closed contours in 2-D: (a) 16-D point (1,1,2,2,1,1,2,
2,1,1,2,2,1,1,2,2) in Partially Collocated Radial Coordinates with
Cartesian encoding, (b) CPC star of a 192-D point in Polar encoding,
(c) the same 192-D point as a traditional star in Polar encoding.

6-D point as a closed contour in 2-D where a 6-D point x=(1,1,
2,2,1,1) is forming a tringle from the edges of the graph in Paired
Radial Coordinates with non-orthogonal Cartesian mapping.

X, X, Xy X
X3 ’\
L X, 1 ® 4-D point P=(0.3,0.5,0.5,0.2) ) in 4-D Elliptic Paired Coordinates,
< rror—— EPC-H as a green arrow. Red marks separate coordinates in the
s 1 X Coordinate ellipse.
1 2 %X R
X 173 N5 Lo T
/ yd T X4 .
xs 1 I//' \\\‘
{ X, 02 X
6-D point (1, 1, 1, 1, 1, 1) in two X1-X6 coordinate systems (left — “< e M >
in Radial Collocated Coordinates, right — in Cartesian Collocated v ' /
Coordinates). 0.5
) S

4
4-D point P=(0.3,0.5,0.5,0.2) ) in Radial %oordinates.



Graph construction algorithms in GLC

X \ B/
7
X3 X : X4 X2 ‘AX
X, 4\’% Xs Xs 4
X, : Xi
2 A\ X5 X2 4

Six coordinates and six vectors that represent a 6-D data  6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-CC1
point (0.75,0.5,0.7,0.6,0.7, 0.3)

P
[ 1 P X
j\ 7 X 7\ X, 3 v/ 6
X3 / X Xy b & X X
X4 Xg 1 4,.-— AN x X 6
\ /; >3 s / 5 \ X / P2 x, ‘\% / \
i N X, Lx, | Xs4
6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-PC. 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-CC2
/ » \ ‘ X X4\‘§ / \\
X i 2N X h
1 5

6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-SC1. 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-SC2



Math, theory and pattern simplification
methodology: Statements

Statement 1. Parallel Coordinates, CPC and SPC preserve L distances for p=1 and
p=2, D(x,y) = D*(x*,y¥).

Statement 2 (n points lossless representation). If all coordinates X;do not overlap
then GLC-PC algorithm provides bijective 1:1 mapping of any n-D point x to 2-D
directed graph x*.

Statement 3 (n points lossless representation). If all coordinates X;do not overlap then
GLC-PC and GLC-SC1 algorithms provide bijective 1:1 mapping of any n-D point x to 2-D
directed graph x*.

Statement 4 (n/2 points lossless representation). If coordinates X;, and X, are not
collinear in each pair (X; X;,;) then GLC-CC1 algorithm provides bijective 1:1 mapping of

any n-D point x to 2-D directed graph x* with Bn/2@ nodes and Bn/2( - 1 edges.

Statement 5 (n/2 points lossless representation). If coordinates X;, and X;, are not
collinear in each pair (X;, X;,;) then GLC-CC2 algorithm provides bijective 1:1 mapping of
any n-D point x to 2-D directed graph x* with @n/2E nodes and Bn/2( - 1 edges.

a7



Math, theory and pattern simplification methodology:

Statements

Statement 6 (n points lossless representation). If all
coordinates X;do not overlap then GLC-SC2 algorithm
provides bijective 1:1 mapping of any n-D point x to 2-
D directed graph x*.

Statement 7. GLC-CC1 preserves Lrdistances for
p=1, D(x,y) = D*(x*,y*).

Statement 8. In the coordinate system X4,X,...,X,,
constructed by the Single Point algorithm with the
given base n-D point x=(x, X ,...x ),and the anchor2-D
point A, the n-D point x is mapped one-to-one to a
single 2-D point A by GLC-CC algorithm.

Statement 9 (locality statement). All graphs that
represent nodes N of n-D hypercube H are within
square S

6-D points (3,3,2,6,2,4) and (2,4,1,7,3,5) in
X1-X¢ coordinate system build using point
(2,4,1,7,3,5) as an anchor.

(1,5,0,8,2,6)
XZ X4 (31512181416)

,,,,,,,,,,,, @(244,1,7,3,5)

(1,3,0,6,2,4) 1| (332644

Data in Parameterized Shifted Paired Coordinates. Blue dots
are corners of the square S that contains all graphs of all n-D
points of hypercube H for 6-D base point (2,4,1,7 ,353) with

distance 1 from this base point.



Adjustable GLCs for decreasing occlusion and

pattern simplification

(a) Original visual rep- (b)Simplified visual rep-
resentation of the two resentation after the shifting
classes in the Parallel and reordering of the Paral-

Coordinates, lel Coordinates.

Simplification of the visual representation by the shifting
and reordering of the Parallel Coordinates

Non-preattentive vs. preattentive visualizations (linearized patterns): 6-
D point A= (3, 6, 4, 8, 2, 9) in blue, and 6-D point B=(3.5, 6.8, 4.8, 8.5,
2.8, 9.8) in orange in Traditional, Shifted Parallel Coordinates, and
GLC

N \

(a) Data in Parallel Coor-  (b) Data in the Shifted Par-
dinates — non-preattentive  allel Coordinates - preatten-
representation. tive representation.

X, X X,

7T / !
m

T
(c) Data in the Shifted (d) Data in the scaled Paral-

General Line Coordinates- lel Coordinates — preatten-
preattentive representation. tive representation



Case Studies: World Hunger data

70 20 = Albania

== plbania \ = Algeria
y i r
60 / —  Algeria Rl g = Angola
- = Angola 0 \ — Argentina
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4 y ]
A0 / = Bangladesh 40 ; === Benin
» = Benin == Bolivia
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20 == [Gotswana :
/// 70 Brazil
Braril
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. 10 === Burkina Faso
0 r r r : : : , == Burkina Faso —_—

_——————— Burundi
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1500-92 150597 2000-2002 2006-08

4-D data: representation of prevalence of under- 4. gata: representation of prevalence of undernourished

nourished in the. populatior} (%) in in the population (%) in traditional time series (equivalent
Collocated Paired Coordinates to Parallel Coordinates for time series)

The Global Hunger Index (GHI) for each country measures as,

GHI = (UNN+UW5+MR5)/3,
where UNN is the proportion of the population that is Undernourished (in %),
UWS3 is the prevalence of Underweight in children under age of five (in %), and
MRS 1s the Mortality rate of Children under age five (in %).



Case Studies: Health Monitoring with PC and CPC

The colors show the progress to the goal.

st 2 - Dark green dot - goal.
S _
2lg (8 TN (00 50, 95,250 - Yellow and light green - closer to the
g8 g goal point.
2 |2 (70, 120, 60, 190) - Red arrow - initial health status.
e [° , Systolie m Experiments - people quickly grasp how
. ouise to use this health monitor.
40 50 60 70 80 90 10011(?
a) PSPC: The green dot is the (b) the same data m This health monitor is eXpandable'
desired goal state, the red arrow is as in (a) in Parallel L i )
the initial state, the orange arrow is Coordinates. m [wo more indicators is another pair of
the health state at the next moni- shifted Cartesian Coordinates.
toring time, and the light green ar-
row is the current health state of - The goal is the same dark green 2-D dot

the person.
4-D Health monitoring visualization in PSPC (a) and

Parallel Coordinates (b) with parameters: systolic blood
pressure, diastolic blood pressure, pulse, and total choles-
terol at four time moments.

- Each graph has two connected arrows.

m Graphs closer to the goal are smaller.
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Case studies: Knowledge Discovery and Machine
Learning for Investment Strategy with CPC

| The CPC visualization shows arrows in (V,,Y,) space of volume V,and relative main outcome
variable Y,

[ ] This is a part of the data shown as traditional time series with time axis.

] CPC has no time axis. The arrow direction shows time.

(] The arrow beginning is the point in the space (V,,Y,;), and its head is the next time point in

the collocated space (V. 1,Y, i1 ). Compamson of two time series:
relative outcome Y7 and relative
[ ] CPC give the inspiration idea for building a trading strategy in contrast with time series figure volume in every one hundred
without it. period.
- It allows finding the areas with clusters of two kinds of arrows.
- The arrows for the long positions are green arrows. o Long and Short Position in Vr-Yr space
- The arrows for the short positions, are red. .
- Along the Y,axis we can observe a type of change in Y in the current candle. if Y, .;>Y, then . VA e S O PN g
Y..1 >Y;the right decision in i-point is a long position opening. Otherwise, it is a short position. Ve )
7
_ Next, CPC shows the effectiveness a decision in the positions. VI(i+1) Yefi1) &
6 HURLU)
_ The very horizontal arrows indicates small profit > . 1) vhir)
V(i) Yr()—> Ar{i+1) Yr(it1)
_ A more vertical arrows indicates the larger profit. 4
3 (ORGQ
u In comparison with traditional time series, the CPC bring the additional knowledge about the A e
potential of profit in selected area of parameters in (V,,Y,) space. ?
! 1 2 3 4 5 6 7 8 9 10

Vr

Some examples of arrows which sowSpoints of



Plii I 34 apace

Figure 8.16. Pins in 3-D space: two cubes found in (Y,,dMA,,V,) space with the maximum asymmetry
between long and short positions.

[Pinm in 34 mpsze

Figure 8.17. The zoomed cubes with the best asymmetry from Figure 8.16. The upper cube with
green circles is selected for long positions lower cube with red circles is for short positions. For better
visibility, the viewpoint is changed from Figure 8. 16.

.

aa
B

0.6

Figure 8. 18. Two determined cubes in Y,-dMA,-V, space with the maximum asymmetry between
long and short positions for the new grid resolution.

Cumulative profit

0.015 T T T T
0.01 - 4
0.005 1
o | ‘ ‘ ‘ . .
0 1000 2000 3000 4000 5000 6000 7000

Candles #300-5300 + 1700 {Test Window)
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Lossless Visualization of 48-D and 96-D data

Examples of corresponding figures: stars (row 1) and PCs lines
(row 2) for five

s
Wiyt
2t
i

ket
i

LU

Two stars with identical sha?e fragments on

intervals [a,b] and [d,c] of coordinates.

NN z\ —

Samples of some class features on Stars for
n=48

A

Samples of some class features on PCs for n=48

Visual Patterns-- combinations of attributes
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Twenty 160-D points of 2 classes represented in star CPC with noise
10% of max value of normalized coordinates (max=1) and with standard
deviation 20% of each normalized coordinate.

Discovering high-
dimensional
interpretable
patterns in

160-Dimensions!

AN

Twenty 160-D points of 2 classes represented in Radial Coordinates

with noise 10% of max value of normalized coordinates (max=1) and

with standard deviation 20% of each normalized coordinate.

fig 10
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fig

(a) Initial 100-D points without noise for Class (Hyper-tube) #1 and Class (Hyper-tube) #2
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(b) 100-D points with multiplicative noise: circled areas are the same as in upper star.

Figure 6.10. Samples of 100-D data in Star CPC used to make participants familiar with the task.

g

==

Twenty 160-D points of 2
classes represented in
Parallel Coordinates with
noise 10% of max value of

£=3

normalized coordinates
(max=1) and with standard
deviation 20% of each
normalized coordinate

fig|18
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Human abilities to discover patterns in high-D data
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51

-

£

o
e Dl

/'(;//f
Z—"\

)

I
:&

S A e

Nine 170-dimensional points of two classes in Parallel Coordinates

The expected classifiable dimensions are
in [160,192] interval for the Radial
Coordinates

Due to advantages of Star CPC over Radial
Coordinates, these limits must be higher
for Star CPC and lower for Parallel
Coordinates

Finding bounds for linear-hyper-tubes
most likely will be also limits for non-
linear hyper-tubes due to their higher
complexity

Traditional 170-D stars: class “musk” (first
row) and class “non-musk chemicals”
(second row). CPC 170-D stars from the
same dataset: class “musk” (third row)
and class “non-musk chemicals” (forth
row).



Lossy Methods Revisited: PCA

e Account for variance of data in as few
dimensions as possible (using linear
projection)

* First PCis the projection direction
that maximizes the variance of the
projected data

e Second PC is the projection direction
that is orthogonal to the first PC and
maximizes variance of the projected
data




PCA can occasionally fail

* Angle has the most information but this is not captured by the basis
* Sometimes most important information is not orthogonal




Lossy Methods Revisited: t-SNE

* Visualizes high-dimensional data in a 2- or
3-dimensional map

* Better than most techniques at creating a
single map that reveals structure at many
different scales

0+ [ e w[n
ESIEAN
EOBEE
5 Joo] [
Slafo]v]v

* Particularly good for high-dimensional data
that lie on several different, but related,
low-dimensional manifolds.

Example: images of objects from multiple
classes seen from multiple viewpoints.

k;




Lossy Visualization

(a) PCA, first two principal components

(b) first three principal components, 3D
PCA.

(c) 2D and (d) 3D visualization of the
nonlinear reduction mapping using t-
SNE

(e) 2D and (f) 3D visualization of the
nonlinear mapping using Laplacian
eigenmaps

(c)

(e)

@ Malionant

" (b)
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Lossy Visualization in ML Models

* Methods like T-SNE, PCA and others do not preserve all information
of initial features (they are lossy visualizations of n- D data)

* They convert n interpretable features to 2-3 artificial features that
have no direct interpretation

* General Line Coordinates is an alternative that preserves all n-D
information when occlusion/clutter in visualization is suppressed that
was successfully done in [Kovalerchuk 2014-2019]



Do PCA and t-SNE actually reveal multi-
dimensional relationships?

 MNIST is visualized in t-SNE as clusters colored by
their associated digit labels so that “those images
with high similarity in their original feature space are
placed close to each other in the 2D/3D space

* |[n this manner, “one can easily identify and which
digit imag_es are outliers (and thus confusing as
another digit)”

* t-SNE author Maaten warned about such statements-
- t-SNE may not assign meaning, to point densities, in
clusters. The outlier and dense areas, visible in t-SNE,
may not be them, in the original n-D space.

* |[n addition, the 2—-D attributes, generated by t-SNE,
do not have direct domain interpretation




nterpreting Time Series via Reversible
Methods

o Trends in retrospective time Nonseasona I Additive Seasona I Multiplicative Seasonal
series data are relatively sPLe)
straightforward to understand

NN

e How do we understand

(HOLT)
predictions of time series in /
data?




nterpreting Time Series via Reversible
Methods

e Similar to the saliency masks on images, a heatmap can be created
based on the relevance produced by XAl methods

* Create a visualization with this heatmap enriching a line plot of the
original time series. Together with domain knowledge, an expert can
inspect the produced explanation visualizations (Schlegel 2019]

Saliency
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Visualizing Association Rules

LHS

items} — 335 rules

—

yogurt, +5

ables, +54 items} — 395 rules

—

other vege

butter, +24 items} — 77 rules

root vegetables, +59 items} — 334 rules
tropical fruit, +12 items} — 30 rules

other vegetables, +27 items} — 136 rules
whole milk, +56 items} — 145 rules

other vegetables, +56 items} — 367 rules
root vegetables, +45 items} — 242 rules

other vegetables, +65 items} — 292 rules

tropical fruit, +21 items} — 36 rules

bottled water, +36 items} — 56 rules
tropical fruit, +40 items} — 295 rules

whole milk, +81 items} — 384 rules

root vegetables, +65 items} — 687 rules
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size: support

color: lift

RHS

hamburger meat}
salty snack}
sugar}

cream cheese }
white bread}
beef}

curd}

butter}

bottled beer}
domestic eggs}
fruitvegetable juice}
pip fruit}
whipped/sour cream}
citrus fruit}
sausage}

pastry}

shopping bags}
tropical fruit}

root vegetables}
bottled water}
yogurt}

other vegetables}
soda}

rolls/buns}

whole milk}

confidence

Two-key plot Scatter plot for 5668 rules

1 = 14
W order 6 .
0.9 _l. 0.9 4 L 5
.. order 5
=S L 0.8
0.8 Bk é - 10
order4 § B
07 _f 3 0.7
:- order 3 0.6 . - 5
0.6 —" .
i order 2 0.5 I I I |
0.5 H | ; : | 0.005 0.01 0.015 0.02 lft
0.005 0.01 0.015 0.02 support
support
* Matrix with rows as Left Hand Side, LHS itemsets of rules
and columns as Right Hand side (RHS) itemsets of rules
* Scalability for many LHS and RHS
[ ]

Readability of small cells having many items

Image source: sklearn



(Ahmad 2018)
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Visualizing ARules using Parallel Sets

Before

* Approach:
* Discovering Association Rules.
* Deleting dimensions irrelevant to AR.

* Feeding rules to two coordinated rule visualizations (called
ARTable and ParSets),

* User interactions
* Visually explore rules in ARTable
Find interesting rules, dimensions, and categories in ARTable
Create and optimize the layout of ParSets
Validate interesting rules
Explore details of rules in ParSets using domain knowledge

Clutter: 11.71%



https://ars.els-cdn.com/content/image/1-s2.0-S2468502X1930021X-mmc1.mp4

Folded Coordinate Decision Tree (FC-DT)

D .

uc

4.5 15 ,
bn bc T~
@ D

(a) Traditional visualization of WBC data
decision tree. Green edges and nodes in-
dicate the benign class and red edges and
nodes indicate the malignant class.

(b) DT with edges as Folded Coordinates in
disproportional scales. The curved lines are
cases that reach the DT malignant edge with
different certainties due to the different dis-
tances from the threshold node.



iForest: Interpreting Random Forests via Visual
Analytics

Making sense of Random Forests

Wind > 1mph
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TreeExplainer for Tree Based Models

(A) “Black box" model prediction . “White box" local explanation
* The polynomial time algorithm to o140 S
. . Blood pressure = 180 Blood pressure = 180 — — 43
compute optimal explanations o el I G
based On ga me theo ry Mortality risk score = 4 MDrtaIityriﬁkscore:f-l
¢ A n eX p I a n ati O n th at d i re Ct I y (B) Combining local explanations from many samples... ..can lead to global model insights
measures local feature interaction T —————
. Tree
effects. Tools for understanding S e

Datasets
(mortality)
(kidney)
{hospital)

global model structure based on
combining local explanations of
each prediction

Interaction effects §273

# samples
(local explanations)

SHAP values

Model monitoring 5274

Explanation embeddings 5275

* TreeExplainer matches human — rorrm—
. o, . features # features
intuition across a benchmark of 12 ' :
user study scenarios Simple visualization with Local explanations based on

TreeExplainer to understand global model structure
[Lundberg 2019]



Controls

®

v Model Info:

type: rule-explainer

#rules: 53

model: wine_quality_red-nn-40-40-
40-40-40-40

v Dataset: wine quality red

Em

sample test

sample train

v Styles

Flow Width:
Rect Width:
Rect Height:

Color Scheme:

Seq Qual

v Settings

Conditional:

a8

Detail Output:

v Rule Filters

Min Evidence:

Fidelity

Rule Matrix

Hlevel 4
&

Mievel 7
= ™
& &F &&
o &
& s &

5
&
&

o G
<5 3
s ;’@ @

@ v Data Table: train | (1199/1199)

Label alcohol

level 5 9.500

sulphates

0.5500

r-—

| E
(|
Lamall |
ol |
AL

total sulfur

density  jioxide

0.9971 22.00

0.64}
i i
bl
o
3 _— volatile
fixed acidity acidity
9.300 0.4300

free sulfur
dioxide

9.000

Data Filter
» Predict X Clean
alcohol
O k@ XD A
%*%-‘m%& M
Filter D
Input
sulphates
AD B
ey A o
ol gt Ay
Filter
Input
density
o 5 ghde
£ 3 2
& kT
Filter O

Input

total sulfur dixide

o PP A
Filter
Input
fixed acidity
i) A L]
59 o7
Filter

Input

volatile acidity

D e &

(NN
Filter
Input
free sulfur dicxide
pH chlorides
3.280 9.08500 1.900

RuleMatrix: Visualizing and Understanding Classifiers using Rules

o

%

o
J.S?

g,)n.'

residual sugar



Brief overview of Visualization
Methods in Deep Learning



Understanding Deep Learning via
Generalization Analysis

Empirical observations

* Convolutional networks for image classification trained with stochastic
gradient methods easily fit a random labeling of the training data.

* It occurs even after replacing the true images by completely unstructured
random noise.

* Here the learning must be impossible and should show up during training,
e.g., by not converging or slowing down.

Theoretical results
* Large neural networks can express any labeling of the training data.

* Theorem: There exists a two-layer neural network with 2n+d weights that
can represent any function on a sample of size nin d dimensions.

* These models are in principle rich enough to memorize the training data.



Understanding Deep Learning via
Generalization Analysis

e Explanation for such accurate models
by known heatmap activation methods &,
can be constructed, but what will be its i

=—a |nception OO m ==
o—o AlexNet
3.0l ™= MLP1x512

time to overfit
N N

=—a |nception |[]
o—o AlexNet 1

Value? °°°°°°°° #—+ MLP 1x512 1
D'00 10 15 0.0 ° 0?2 0.4 0.6 . . 0.0 0.2 0.4 016 01
° d . . L h L3 f . f | thousand steps label corruption label corruption
TO I St I n g u I S It ro m a m e a n I n g u (a) learning curves (b) convergence slowdown (c) generalization error growth
eX p I a n at I O n We n eed to a n a |yze t h e Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
. . various experiment settings decaying with the training steps. (b) shows the relative convergence
Ee n e ra I I Za t I O n p ro C e SS a n d e r ro rS time with different label corruption ratio. (c) shows the test error (also the generalization error since
. . training error is 0) under different label corruptions.
eyond training data.

* How to distinguish between the models
trained on the true labels that are
potentially explainable and models
trained on random labels (high
generalization error) that should not be
meaningfully explainable?



Activation maximization (AM)

* Activation maximization is an
analysis framework that searches for
an input pattern that produces a
maximum model response for a
guantity of interest

o Response of individual units in the Activation maximization applied on MNIST.
network. Like the analysis of
individual neurons in the brain by
neuroscientists, this approach has
limitations

[Berkes 2006, Erhan 2009, Simonyan 2013]



Activation patterns of individual hidden nodes

e LSTMVis: Interactive exploration of the learnt behavior of hidden nodes

* A user selects a phrase, e.g., "a little prince," and specifies a threshold the
system

* shows hidden nodes with activation values greater than the threshold and
* finds other phrases for which the same hidden nodes are highly activated.

* Given a phrase in a document, the line graphs in the top panel visualize
the activation patterns of hidden nodes over the phrase

* Several other works with a similar idea -- activation and heatmap.

[Kahng 2018]



LSTMVis System: Open questions

LITMViS chidbsokwith Topk  seurce sttes-ststest  pos 112 o i

* In the nearest neighbor — o
explanation assumes the 7753 BN /=0 A
most similar case. No SN
explanation of why the el e e . e e
activation makes sense T T aE T L LD o sm—

el

0o

-
a m he tmlmﬁv of [Ta liiil fnes «fz» Tha king wag it 1o conuh the fies . but the mestwndd not hear of guch @ thing «fgs She did not bWieas i fiee - e eaid that they had seer el ard st she st

go in vmﬁ ‘s all poordwaf in RRE- But Freen said not with find him qeen of wiich the we= did neser be her that as d=em ; * He g so cere ft 8 ‘s for did Moo her shoud not got of so they fhe coud her

find mqtﬁuiwho hiz manm child who RSB bince had aste , be that Pisce [ who she quen saidcerah show . the a5 felow for -RSB- But siid very befes2 him that or she coukdrcing theycoud 3 aows to or he der did a

* Where are relations between . cwsmwmns — gt h @

Il match fast precise  © Mkl S86  meta [matocount ner [pes)

salient element is capturedin .-,

F the

ffiepiee . </1> The kirg was witeto  mesd the e, hut the gieenwoud not hear of
%. </t The king was misto  muit the fier,  but the aienwndd not besr of
Homl. or emhe, and the like . ° <s=T Thatls true, "  semithe ogre

. . . .
? e el into fom . ' «fe>Andin @ womimcha  fiece e sood Eloethem,  that all the pess
IS Vlsua IZa Ion ° & the cowt of king . and it mpesdthat he  was hedag pmes and gvng plzesto  the best e, (70
i =t or @ mose; but | mustownto you | teke Bis to be mmE. <z

litle shed,  and deeedhim up to @ rlng in  de wall . </s> But food was gives him
deegpit  whichhad beenmateto trap bears, _ and Me hoes,  who werehdigin A e f
finile boy | 50 she Oeev her ball in e texaol The NmE" huts . <(s= A caild

. O pime mie of GiEsemion,  and yer ses whald | eploses | am o mkmin . " /s Useng
& the am of mos! ekl young il |, who worechais o godd on her wists and was stk her save . -
' o wea of vory puny mSer,  ond samsowor spoica ward,  which meds fiom take taat for sy which waa

Bold terper and tookddidit in  bevig or  wafin of  pee ganks and Faie ; and used
i many obes,  who bowe westo  smskwell ,  but think those very mies who ane s deing
gesl many dider.  and of thamall oaly one S was left <fs= Bull then she was werlh

&
I
5
&
BE OB DN DN DD DL e DB

explanation is right? | B

* Visual tools are limited by
Heatmap and Parallel
coordinates



Sensitivity Analysis

* |[dentify the most important input features based on the model's
locally evaluated gradient or some other local measure of variation

* The most relevant input features are those to which the output is
most sensitive

* Sensitivity Analysis does not produce an explanation of the function
value f(x) itself, but rather a variation of it i.e., what makes this image
more/less a car?”, rather than the more basic question “what makes
this image a car?”.

* Example: Image-specific class saliency map, highlighting the areas of the given
image, discriminative with respect to the given class



Sensitivity Analysis: Example

 Sensitivity analysis applied to a convolutional DNN trained on MNIST,
and resulting explanations (heatmaps) for selected digits

* Heatmaps are spatially discontinuous and scattered, and do not focus
on the actual class-relevant features

* This inadequate behavior can be attributed to the nature of sensitivity
analysis

input sensitivity analysis

2[1]o]e
BOEGE
GEOEO




Decision Trees for Deep Learning Models

e Learn a decision tree, which
clarifies the specific reason for
each prediction made by the CNN
at the semantic level

* Decision tree decomposes feature
representations into elementary
concepts of object parts

* The decision tree shows which
object parts activate which filters
for the prediction and how much
each object part contributes to the
prediction score

A torso ﬁlter contribute 12.1%

Mode for
flying birds

Disentangled
representations

Most generic
rationales

(tmﬁ get)
Cwome M&itsgsgﬁc
\WWRhEY .2

[Zhang 2019]

Mode for
standing birds

Mode for long-
neck birds




Layer-wise relevance propagation (LRP)

* Technique for explaining predictions E—i‘ TIEL)
* The LRP technique is rooted in a clole -
conservation principle, where each neuron % —1- -1
= 7 =

receives a share of the network output, and
redistributes it to its predecessors in equal
amount, until the input variables are reached .. ~ = s =

e ", .,\"j “_t.j L output
- . —~ __/\,i"-'.r)
* For LRP to produce good explanations, the u% %;\@7&
P Z ><--\_ i N

number of fully connected layers should be -7~~~
kept low, as LRP tends for these layers to 2 eevmuon propsgation

redistribute relevance to too many lower- © O @@ Z@ oo
.« e [ sl e : t — -
layer neurons (loose selectivity) Q08 =0=8
OLEOLE o=

[Bach 2015]



Learning deep features

* Challenge: Scene recognition performance
is lower than that for object recognition

* Reasons: Current deep features trained
from ImageNet are not sufficiently
competitive

* Approach: Methods to compare the
density and diversity of image datasets

* CNN to learn deep features for scene
recognition

* Heatmap Visualization of the CNN layers’
responses to show differences in the
internal representations of object-centric ™ T __
and scene-centric networks. Plases CNA. Cons | units contains 56 fikers. The Poch 2 oature aap s 135 13,¢356: The Pool

feature map is 66 256: The FC 7 feature map is 4096 1. Subset of units at cach laver are shown.

ImageMNet-CHNN

. T e e A
| —— g

Flaces-CNN

- WY PR PR Y ek -

[Zhou 2014]



Visualization of Image Features in Heat Maps

* CIFAR-10 classification benchmark problem ptchz [ o | 1®)
is to classify RGB 32x32 pixel images across e ey ek
10 categories

* CIFAR-10 is a multi-layer network with |
alternating convolutions and nonlinearities | =}
followed by fully connected layers and e R R
softmax classifier

° 1M Iearnable parameters 19.5M multiply_ input image X ageregated heatmap R(X)

3 d d ') pe ratIO NS to com p ute | nfe rence on a "hg[ge".i-l:;é;ﬂ;g[?]zngg“é?n; Iilﬁzéﬁaied?;?isathat are relevant for the CIFAR-10 class

single image

[Montavon 2018]
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Comparison of the three

heatmap computations

 Sensitivity heatmaps (local explanations) measure
change of the class when specific pixels are
changed based on partial derivatives. Applicable
to architectures with differentiable units

* Deconvolution method (“autoencoder”) applies a
convolutional network g to the output of another
convolutional network f. Network g “undoes” f

* Layer-wise Relevance Propagation (LRP) exactly
decomposes the classification output f(x) into pixel
relevancies by observing the layer-wise evidence
for class preservation (conservation principle)
Applicable to generic architectures (including with
non-continuous units) -- does not use gradients



Example: Heat maps visualization and explanation
of deep learning for pulmonary tuberculosis

w5

Left: Chest radiograph with pathologically
proven active TB.

Right: The same radiograph with a heat
map overlay of a strongest activations
from the 5t convolutional layer from
GooglLeNet-TA classifier. The red and light
blue regions in the upper lobes -- areas
activated by the deep neural network.
(areas where the disease is present) The
dark purple background -- areas that are
not activated.



Generative Adversarial Networks (GANSs)
Visualization

* Visualization and understanding of
GANs is largely missing.

* How does a GAN represent our visual
world internally?

e What causes the artifacts in GAN
results?

* How do architectural choices affect
GAN learning?



GANSs Visualization

A framework to visualize and
understand GANs at the unit, object,
and scene level

* Step 1: identify interpretable units
closely related to object conceﬁts with
a segmentation-based networ
dissection.

* Step 2: quantify their causal effect by
measuring interventions to control
objects in the output

e Step 3: examine the contextual
relationship between these units and & e
thElr SU rroundlng by |n5e rtlng the (a) Example artifact-causing units ()Ablatlng “artifact” units improves results

Figure 8: (a) We show two example units that are responsible for visual artifacts in GAN results.

d |Scove red O bJ eCtS | nto n eW | m ages There are 20 units in total. By ablating these units, we can fix the artifacts in (b) and significantly
[Bau 2018]
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Explanatory Graphs

* Represents the knowledge hierarchy hidden
in conv-layers of a CNN

* The explanatory graph has multiple layers.
Each graph layer corresponds to a specific —— 2
conv- ayer Of d CNN ylnpu’t Feature maps Explanatory Parts corresponding to

. . image  Oof different graph each graph node
* Each filter in a conv-layer may represent convlavers
the appearance of different object parts

* Think of these as compression of feature
maps of conv-layers

* Just like a dictionary, each input image can
only trigger a small subset of part patterns
(nodes) in the explanatory graph

[Zhang 2018]



Class:kevboard

Class:unicycle

Class:ballplayer

Class:racket

isual Explanations

Guided backprop +
GRAD-CAM [10 : GRAD-CAM [10] Targeted DVE




Concept Activation Vectors (CAV)

e Given a set of examples representing a concept of human interest,
find a vector in the space of activations of layer L that represents this
concept

 To find such a vector consider the activations in layer L produced by
input examples that in the concept set versus random examples

f, : R" — R™ hik : R™ — R

B K" class

S ()

L U T ) =Vhu i (f1(")) - v,



Limits of Visual Interpretability in
Deep Learning



Visual Methods for Interpretability in Deep
Learning

classify image

>

Black Box
—— | Rooster

Al System

prediction f(x)

Explanation methods

LRP: Decomposition

 SR= W

Q O O 0
P O ; O ' (how much does each pixel :
W 1 contribute to prediction) !

O O . SA: Partial derivatives |

heatmap explain prediction ; R — if( ) :

Al system's decision is < [ v | |Oxy € I
based on these pixels ! |
Why explainability ? ' (how much do changes in each |
--------------------------------------- 1 pixel affect the prediction) :

' Verify predictions
Identify flaws and biases

Learn about the problem :
' Ensure compliance to legislation !

[Samek 2017]



Are the concepts discovered by deep learning
explainers real?

* No distinction between individual high-level unit ‘concepts’ and
random linear combinations of hig-level unit ‘concepts’

* It is the space of relations rather than the individual units that
contains the semantic information in network?

Single Neuron Random Pro;ectlon
[Szegedy 2014]



Most methods for explainability in deep
learning are incomplete

* Most explanations in deep learning are implicit and incomplete
requiring a human giving a meaning to salient/dominant elements

* In the mast example a human recognizes a mast in these pixels. In
addition, this explanation can be local and case specific. In the boat
example, another boat in the same image has no mast and requires
its own explanation to be recognized as a boat

input = ( \ evidence for "car"

" | for "boat' | ground truth: "boat"




Insights from Adversarial Learning

 What does adversarial learning reveal about what deep learning
models are learning?

* Humans impose semantics on ML models




When a panda is a gibbon

Classified as panda Small adversarial noise Classified as gibbon



Behold the Ostriches!




Hidden layers and Semantic Hierarchy

CATEGORY

* The success of DL is not just because of nov oden | nni’Q s | 7T | ©3Ordog? | Gume v
“mathematics but also on physics, which 5| MF“
favors certain classes of exceptionally i I“ I
simple probability distributions that deep . vowen . R oo >
learning is uniquely suited to model” J\\ TR R e

* Given a multivariate polynomial and any ;%M % My
generic non-linearity, a neural network °F »
with a fixed size and a generic smooth h o e T | s ToAGED -
activation function can indeed I 2 E g
apfproximate the polynomial highly M w\f Ml%
efficiently g Pl .

(a8 TRANSFORMED &

* Success of deep learning possibly related & | o=

to hierarchical and compositional
generative processes in physics

add noise

take linear
combinations,

¥, DATA FINAL IMAGE y, 8
4

i
h .
K LA
s
W
4
Pixel 1 Pixel 2 ar
TELESCOPE | 6422347 6443428  -454.841
3141592 2718281 141.421
8454543 9345593 654.766
1004356 8345388  -305.567

—
;
=
<—
u 0/1?3[')19([ 192]28

[Lin 2017]

'10[09 102]28



Information Bottleneck

* Information Bottleneck: A distortion function that measures how well

Y is predicted from a compressed representation T compared to its
direct prediction from X

* “error back-propagation, pushes the layers of any deep neural
network - one by one - to the information bottleneck optimal tradeoff
between sample complexity and accuracy, for large enough problems.
This happens in two distinct phases”

* The first, the network memorizes training examples with a lot of
irrelevant details with respect to the labels

* The second phase the layers "forget" irrelevant details of the inputs,
which dramatically improves the generalization ability of the network

[Tishby 2000, Shwartz-Ziv 2017]



Information Bottleneck

INPUT:

Image
broken
info pixels Layer 1 L2 L3 L4 LS
Pixel Edges Combinations Features Combinations
values identified  of edges identified of features
detected identified identified

[ Tishby 2000, Shwartz-Ziv 2017]



Data quality and Generalization

* A common method of combining
results of Deep Learning (DL) from
images with visualization is
discovering classification model for
images using a DL algorithm,
identifying informative deep

features

* Visualizing identified deep features
on the original image.

* |ssue — Are visualized features
always explainable?

[Gargeya 2017]



Data quality and Generalization

Google medical researchers

* If an image has a bit of blurora humbled when Al screening tool
dark area, the system will reject it falls short in real-life testing
(] Clinics in the StUdy Often Devin Coldewey @techcrunc h / 5:03 pm EDT « April 27,2020 [:[ mmmmmmm

experienced slower and less
reliable connections. In one clinic,
the internet went out for a period
of two hours during eye screening,
reducing the number of patients
screened from 200 to only 100.

* Fewer people in this case received
treatment because of an attempt
to leverage this technology




User-centric Views of
Interpretability of Visual Methods



What is User Centric Interpretability?

* The participation of end users in the design of machine learning tools
is imperative - to better understand how the end users will utilize the
output components

* The notions of interpretability that the designer and the user have
may be different

* In many cases the user’s expectation of Interpretability or
explainability are centered on actionability



The Problem of Ground Truth

e Data may not be of good quality because
experts may not agree on definitions of
labels e.g., diagnosis in radiology

* Requires further follow-up, pathologic
diagnosis, or clinical outcomes to achieve
ground truth

* It is estimated that 2%—20% of radiology
reports contain demonstrable errors

For the top image, all doctors agreed that
the grade should be 1, while there was a
significant spread for the bottom image

[Raghu 2019, Willemink 2020]



Interpretations are often Incomplete

* How do we make sense of cases where it is possible to explain a
model without completely understanding it?

e Can we use black-boxes to understand black-boxes?
 What does it mean for an explanation to be complete?
 Many Examples from the History of Science



Kepler’s Laws of Planetary Motion

» Kepler law’s (1619) provided a elliptic mathematical approximation of
planetary motions but not a why explanation for it

* Newton’s theory of gravitation provided an explanation almost 70
years later (1687)

< Planet

| 6 months - A

Sun Y & months Sun a

(1) (2) 2{3} ; T = time to complete orbit
The orbits are ellipses Equal areas in equal time T* o< @a” a = semi-major axis



Nobody Understands Quantum Mechanics!

> [

In this Feynman diagram, an electron (e”) and a
positron (e*) annihilate, producing a photon (y,
represented by the blue sine wave) that becomes
a quark—antiquark pair (quark g, antiquark q),
after which the antiquark radiates a gluon (g,
represented by the green helix).

Plane Waves

enter

What does it mean for something to be a particle

and wave at the same time?

Particle

enter




Why do Saliency Based Methods Work

* Visual Summarization

e Attenuation to human gaze
* Low cognitive overload
 Plausible justification




When Saliency does not work

 What is the model learning when it learns lipstick?



When Saliency does not work

* Not always possible to extract semantics from feature maps

of a filter
- _" . . ] -
Feature maps w E
of a filter - s _Be P
" ey =

Feature maps
of a filter

Feature maps
of a filter

Feature maps




Human vs. Algorithmic semantics revisited

* Better performing DL models have higher proportions of deep
neurons highly predictive of human gaze

* The predictive neurons are attuned to clear semantic categories such

as animals (dogs, cats),objects (motorbike, ball) and parts (head,
hair)

* This hints that saliency, as experienced by humans, likely involves
high-level world knowledge in addition to low-level perceptual cues

* Computational approach to improve DL: minimizing the distance
between the predicted saliency maps and the ground truth recorded
by human gaze

[He 2018, Cornia 2018]



What needs to be interpretable when we
interpret ML models

* Interpretability is a system wide phenomenon, features, parameters,
and even insight delivery must be interpretable

 Satisfysing is needed rather than always having model fidelity
e “All models are wrong. Some models are useful.” - Box
* Interpretability often does not require completeness

* A satisfactory explanation of the decision process of the underlying
model is often required



Systems view of interpretability

8 =

Features Algorithm Model Parameters Model

Al Solution

i

[— L
—3
NN
J

JN\TC

Each element constituent of the solution process
needs to be explainable for the solution to be
truly explainable [Lipton 2016]
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Operationalizing Interpertable ML
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Only a small fraction of real-world machine learning systems actually constitutes
machine learning code [Sculley 2015].



Open Problems and Current
Research Frontiers



Explanation Fidelity in Visual Methods

* Many, if not most, explanations are wrong, while some explanations
are useful. Requiring absolute fidelity in interpretable ML is
unwarranted, given the complexity of models involved

* What are the “good enough” models that allow debugging? Does the
explanation capture the space of phenomenon to be explained?

* The right explanation is not necessarily the ‘correct’ explanation.
Context and use cases determine what level of fidelity is required for
the explanations



Right for the Right Reasons Model

* Models can be right for the wrong reasons [Ross 2017]
* Use domain knowledge to constrain explanations
* Training models with input gradient penalties

Input gradients +soc.religion.christian [¥alt.atheisn

From: USTS012@uabdpo.dpo.uab.edu

Subject: Should teenagers pick a church parents don't attend?
Organization: UTexas Mail-to-News Gateway

Lines: 13

Q. Should teenagers have the freedom to choose what church they go to?

My friends teenage kids do not like to go to church.

If left up to them they would sleep, but that’s not an option.

They complain that they have no friends that go there, yet don't
attempt to make friends. They mention not respecting their Sunday
school teacher, and usually find a way to miss Sunday school but
do make it to the church service, (after their parents are thoroughly
disgusted) | might add. A never ending battle? It can just ruin your
whole day if you let it.

Has anyone had this problem and how did it get resolved?
£

LIME +soc.religion.christian |+alt.atheism

From: USTS012@uabdpo.dpo.uab.edu

Subject: Should teenagers pick a church parents don't attend?
Organization: UTexas Mail-to-News Gateway

Lines: 13

Q. Should teenagers have the freedom to choose what church they go to?

My friends teenage kids do not like to go to church.

If left up to them they would sleep, but that's not an option.

They complain that they have no friends that go there, yet don't
attempt to make friends. They mention not respecting their Sunday
school teacher, and usually find a way to miss Sunday school but
do make it to the ehurch service, (after their parents are thoroughly
disgusted) | might add. A never ending battle? It can just ruin your
whole day if you let it.

Has anyone had this problem and how did it get resolved?

[Lakkaraju, Bach & Leskovec, 2016]



Evaluation of visual methods

CHC

* Comparison of three heatmaps for digit ‘3.
e L: The randomly generated heatmap — no interpretable information

* C: The segmentation heatmap — shows the whole digit without relevant
parts, say, for distinguishing ‘3’ from ‘8" or ‘9.

* R: A relevance heatmap shows parts of the image used by the classifier.

e Reflects human intuition on differences between ‘3’, ‘8 and ‘9’ and other

digits
[Samek 2017]



Domain vs. non-Domain validation

* How do we validate explanations if complete fidelity is not required?

* The interpretation must make sense within the ontology of the
domain

e Qutside of the domain, the method needs to operate within the
constraints imposed by formal methods when applicable

* Validation is a domain focused question, but can one create cross-
domain general methods for validation?



Cognitive Limitations

* Machine Learning is used in problems where the size of the data
and/or the number of variables is too large for humans to analyze

* What if the most parsimonious model is indeed too complex for
humans to analyze or comprehend?

* Ante-Hoc explanations may be impossible and post-hoc explanations
would be ‘incorrect’
* "[Humans] make a decision first, and then you ask, and then they

generate an explanation and that may not be the true explanation.”
— Peter Norvig



Cross-Domain Pollination

e Case study: WBC data with the Collocated Paired Coordinates (CPC-R)
algorithm, for converting non-image data to images, and CNN
algorithms for discovering the classification model in these images.

* Each image represents a single WBC data case, as a set of squares
with a different level of intensities and colors

* The CPC-R algorithm is a modification of Collocated Paired
Coordinates (CPC) algorithm

* The CPC-R algorithm, instead of connecting pairs (x1,x2) by arrows,
uses the grey scale intensity from black for (x1,x2) and very light grey
for (x,_4,x,) for cells. Alternatively, intensity of a color is used. This
order of intensities allows full restoration



Cross-Domain Pollination

* Figure (a) shows the basic CPC-R image design and Figure (b) shows a more
complex design of images, where a colored CPC-R visualization of a case is
superimposed with mean images of the two classes, which are put side by side,
creating double images.

* The advantage of CPC-R is in lossless visualization of n-D cases, and the ability to
overlay them using heatmap with salient points discovered by the CNN model,

for model explanation PERECELEE
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CPC-R visualization of non-image 10-D points.



Explanations are only as good as the model

* If there are varying degrees of fidelity in the interpretation then how
do we add guards in implementation of interpretable models in the
real world?

* Examples where the performance of the expert declines after results
from a DL system are shown to them

e Users of ML systems are tempted to doubt their own judgement
when information from a decision support system is shown



How to deal with extremely complex models

* What should explanation for very complex model look like?




Future Directions

* Creating simplified explainable models with prediction that humans can
actually understand.

* “Downgrading” complex Deep Learning models for humans to understand
them.

* Expanding visual and hybrid explanation models.
* Further developing explainable Graph Models.

e Further developing ML model in First Order Logic (FOL) terms of the
domain ontology.

* Generating models with the sole purpose of explanation.
e Post-training rule-extraction.



Future Directions

* Expert-in-the-loop in the training and testing stages with auditing models
to check generalizability of models to wider real-world data.

* Rich semantic labeling of a model’s features that users can understand.

* Estimating the causal impact of a given feature on model prediction
accuracy.

e Using new techniques such as counter-factual probes, generalized additive
models, generative adversarial network technique for explanations.

* Further developing heatmap visual explanations of CNN by Gradient-
weighted Class Activation Mapping and other methods with highlighting
the salient image areas.

* Adding explainability to DL architectures by layer-wise specificity of the
targets at each layer
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