
Deep Explanations in 
Machine Learning via 
Interpretable Visual Methods

Boris Kovalerchuk1

Muhammad Aurangzeb Ahmad2,3

Ankur Teredesai2,3

[1] Dept. of Computer Science, Central 
Washington University

[2] Dept. of Computer Science and Systems, 
University of Washington Tacoma 
[3] KenSci Inc. 



Outline

I. Foundations of Interpretability
II. Discovering Visual Interpretable Models 
III. Limits of Visual Interpretability in Deep Learning
IV. User-centric Views of Interpretability of Visual Methods
V. Open Problems and Current Research Frontiers



Foundations of Interpretability



What is Interpretability?

Decision Tree A

Decision Tree B

[Ahmad 2018] 



Types of Machine Learning Models

There is an explanation about how the 
model is making predictions Examples: 
Decision Trees, Regression Models etc.

There is no explanation with respect to
 how the model is making predictions
Examples: SVMs, Random Forest, Gradient
Descent Models etc. 



Explainable AI / Interpretable Machine 
Learning
• Explainable AI or interpretable machine 

learning: Giving explanations of AI/machine 
learning models to humans with domain 
knowledge

• Explanation: Why is the prediction being made?
• Explanation to Human: The explanation should 

be comprehensible to humans in (i) natural 
language (ii) easy to understand representations

• Domain Knowledge: The explanation should 
make sense to a domain expert

Standard Model Lagrangian
[Craik 1967, Doshi-Velez 2014]



Definitions

Definition (Comprehensibility, C(S, P))
The comprehensibility of a definition (or program) P with respect to a human  
population S is the mean accuracy with which a human s from population S  
after brief study and without further sight can use P to classify new material  
sampled randomly from the definition’s domain
Definition (Inspection time T (S, P))
The inspection time T of a definition (or program) P with respect to a human  
population S is the mean time a human s from S spends studying P before  
applying P to new material
Definition (Textual complexity, Sz(P))
The textual complexity Sz of a definition of definite program P is the sum of 
the  occurrences of predicate symbols, functions symbols and variables 
found in P

[Muggleton 2018]



How interpretable are interpretable models?

• Domain
• Problems in healthcare e.g., risk of mortality have more stringent 

requirement than retail e.g., placement of ads [Ahmad 2018]
• Soundness 

• An explanation is Sound if it adheres to how the model works [Kuleza 2014]
• Completeness

• An explanation is Complete if it encompasses the complete extent of the 
model  [Kuleza 2014]

• Modality
• Until recently most interpretable large predictive time series models were not 

really interpretable [Schlegel 2019]



Domain specificity of interpretations

• Describing the trained ML model in terms 
of domain ontology without using terms 
that are foreign to the domain where the 
ML task must be solved [Kovalerchuk, 
2020]

• The explanations/interpretation has to 
make sense to the domain expert who is 
going to use the ML model

• The same data may have different meaning 
in different domains e.g., ratings in Uber vs. 
Amazon



User centricity of interpretations

• Explanations need to be in the right language and in the right context 
[Doshi-Velez 2014, Druzdzel 1996]

• ELI5 Principle: Explain it like I am 5 (years old)
• Making domain sense may require sacrificing or deemphasizing 

model fidelity
• Explanations should be role-based - A physician requires different 

explanations as compared to a staffing planner in a hospital



Ante-Hoc vs. Post Hoc Models

Ante-Hoc (Internally Interpreted)
• Models where the predictive 

model and the explanation 
model is the same

• ML model explained in terms of 
interpreted elements of their 
structure not only inputs

Post-Hoc (Externally Interpreted)
• Models where the predictive 

model and the explanation 
model are different

• ML model explained in terms of 
interpretable input data and 
variables, but without 
interpreting the model structure



Explicit vs. Implicit Interpretations

Explicit Interpretations
The interpretation is explicitly 
from the model output

Implicit Interpretations
The interpretation needs to be 
derived after the application of 
additional domain knowledge 

Decision Trees Heatmaps



Implicit Explanations

• Consider recognizing a boat in an image 
Recognize an image as boat based on a 
group of pixels that look like a mast

• This explanation is not applicable to 
another boat in the same image since that 
boat has no mast and requires its own 
explanation. Such conceptual explanations 
cannot be derived from DNN models

• In contrast, in medical imaging, if a 
radiologist cannot explicitly match DNN 
dominant pixels with the domain concepts 
such as tumor, these pixels will not serve as 
an explanation for the radiologist.     



Using black-box models to explain black box 
models?

The dominant/salient pixels of the image represent the mast as a 
distinct feature of the boat relative to a car and a truck. This is a result 
of human knowledge what is a mast that is not explicitly present in the 
image 



Bayesian Models Neural Nets Ensemble Models Markov Models

Statistical Models Graphical Models Reinforcement
Learning

Natural Language
Processing

Expert Systems Recommendation
Systems [Chang 2009]

Supervised Learning

Tutorial Scope
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Discovering Visual Interpretable 
Models 



What is visual interpretability?
Non-Visual Methods

[Yang 2017]
Visual Methods

β

X3X2

X5 X4

X6X7

X X9 8

X11X10

X13X12

X1X16

X15 X 14

[Letham 2015]



Visual Understanding Textual Understanding

Understanding the algorithm 
may not mean be sufficient

The Allure of Visual Methods



Why Visual Thinking?

• A lot of creative thinking is visual
• Scientists who declared the fundamental role that

images played in their most creative thinking: Bohr, 
Boltzmann, Einstein, Faraday, Feynman,  
Heisenberg, Helmholtz, Herschel, Kekule, Maxwell,  
Poincare, Tesla, Watson, Watt etc.

• Albert Einstein: “The words or the language, as 
they  are written or spoken, do not seem to play 
any role in  my mechanism of thought.”

[Thagard & Cameron, 1997; Hadamard, 1954; Shepard & Cooper, 1982]



Pre-History of Visual Thinking
Chinese and Indians knew a visual proof of the Pythagorean Theorem in
600 B.C. before it was known to the Greeks [Kulpa 1994]

Lingxiao Pagoda of ZhengdingMadhura Meenakshi Temple



Pre-History of Visual Thinking

a

b

(a+b) 2 (area of the large square) = a2+b2+ab+ab=(a+b) 2  

a2+b2=(a+b) 2(area of the large square) - 2ab (4 light
green  triangles) = c 2 (area of inner darker green
square

Thus, we follow this tradition -- moving from 
visualization of solution to finding solution visually 
with modern data science tools

c



Approaches to discovering visual methods

• We are moving from visualization of solution to finding solution 
visually

• Why Visual?
To leverage human perceptual capabilities

• Why interactive?
• To leverage human abilities to adjust tasks on the fly

• Why Machine Learning?
• To leverage analytical discovery that are outside of human abilities
• We cannot see patterns in multidimensional data by a naked eye



Approaches beyond visualization of existing 
models
• Components of approaches:

• Visual methods for n-D data representation
• Visual methods for model discovery in visual n-D data representations
• Methods to interpret visual data representations and models that are not 

internally interpretable

• Visual methods for 2-D/3-D representation of n-D data
• Reversible/lossless/interpretable: Parallel Coordinates, Radial Coordinates,  

General Line Coordinates, Shifted Paired Coordinates, Collocated Paired  
Coordinates, and others.

• Non-reversible/lossy/with challenging interpretation: PCA, MDF, RadVis,  
Manifolds, t-SNE and others



What would be the best guess about a 
line fitting this data?

x y class

1 0.5 1

1.1 6 2

2 1.5 1

2.2 5 2

2.8 2.8 1

3 4 2

3.5 3.3 1

4 3.8 1

4 2.6 2

4.5 4.7 1

5 1.8 2

5 5 1

5.5 5.5 1

6 0.8 2

What is Visual Discovery?



What would be the best guess about a 
fitting this data?

x y class

1 0.5 1

1.1 6 2

2 1.5 1

2.2 5 2

2.8 2.8 1

3 4 2

3.5 3.3 1

4 3.8 1

4 2.6 2

4.5 4.7 1

5 1.8 2

5 5 1

5.5 5.5 1

6 0.8 2

What is Visual Discovery?

A simple linear discrimination function



x y class

1 0.5 1

1.1 6 2

2 1.5 1

2.2 5 2
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3 4 2
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4 3.8 1
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5.5 5.5 1

6 0.8 2

What is Visual Discovery?
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=
In contrast a quick look at  these data, 
immediately  gives a visual insight of a  correct 
model class of “crossing” two linear  functions



x y class
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Visual Discovery in 2-D
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How to do visual discovery in n-dimensions?

ID FD1 FD2 FD4 FD5 FD6 FD10 FD12 FD15 FD16 FD18 FD20 FD22 FD23 FD24 FD25 FD26 FD27 FD28
1 0 0 2.749807 9.826302 4.067554 0 0 0 5.244006 0 2.743422 0 0 0 0 6.254963 0 0
2 11.51334 9.092989 0 12.46223 0 7.597155 0 0 8.940897 0 0 0 4.268456 0 0 0 0 1.309903
3 10.27931 0 2.075787 0 4.042145 0 0 0.477713 3.97378 0 0 2.477745 0 0 0 5.583099 0 7.418219
4 0 18.31495 0 0 0 0 0 0 4.472742 4.671682 0 7.248355 12.11645 0 0 0 6.030322 0
5 14.12261 15.1236 9.695051 0 0.915031 0 0 6.086389 9.139287 0 0 0 8.931774 0 0 0 0 0
6 0 0 5.405394 0 0 2.951092 0 3.797284 4.576391 0 0 0 0 0 2.763756 0 0 2.562996
7 0 0 0 8.068472 0 3.267916 0 0 5.09157 6.082168 0 0 5.42044 0 0 4.431955 0.415844 2.73227
8 6.169271 4.918356 5.566813 0 0 4.884737 5.168666 0 5.189289 0 0 0 2.49011 0 4.750784 2.994664 0 0
9 11.64548 0 0 12.16663 0 8.407408 0 0 0 0 0 0 4.289772 0 0 4.652006 0 0

10 9.957874 7.829115 0 0 0 0 0 0 7.082694 8.388349 0 0 0 0 0 4.706276 0 0.705345
11 9.994487 12.3192 3.058695 0 0 0 6.111047 0.380701 3.904454 0 2.573056 0 0 0 0 5.610187 0 0
12 0 8.446147 7.506574 0 0 5.846259 7.362241 6.557457 7.627757 9.05184 0 0 0 0 6.646436 0 0 0
13 13.65315 18.11681 2.457055 0 8.218276 0 5.689919 0 4.45029 3.213032 5.992753 0 11.56691 0 0 7.734966 0 0
14 0 0 0 8.710629 0 0 0 0 6.466624 0 0 0 3.865449 0 5.339944 3.943355 0 0
15 11.08665 0 0 12.57808 0 8.377558 0 9.269582 0 10.28637 0 0 4.141793 0 0 4.953615 0 0.433766
16 0 0 7.32989 9.848915 0 0 6.639803 0 0 0 0 0 0 0 0 4.288343 0 0
17 0 0 8.49376 0 0 0 7.403671 9.346368 0 0 0 0 0 0 0 0 0 0
18 9.52255 0 0 10.30969 0 0 6.508697 0 0 9.04743 0 0 3.113288 0 7.667032 0 0 0
19 0 9.237608 3.488988 7.443493 0 0 0 0 0 0 0.921821 1.305681 0 0 0 4.447716 0 4.174564
20 0 16.78071 2.745921 0 5.606468 0 7.824948 0 0 4.807075 4.454489 0 0 0 0 7.226364 0 10.62363
21 0 0 8.18506 0 0.469365 4.241147 0 5.823779 0 0 0 0 0 0 0 6.475445 0 4.49432
22 9.609696 12.07202 0 6.483721 0 0 0 0 0 1.554688 0 5.446015 0 0 0 0 0 9.85667
23 10.71318 0 0 11.44685 0 8.097867 0 8.832153 8.646919 0 0 0 0 0 0 4.705225 0 0
24 6.625456 0 3.686915 6.715843 0.187058 0 3.735899 3.55698 0 0 0 0 0 0 2.996381 3.700704 0 0
25 9.794333 0 0 9.788224 0 4.599581 0 0 0 0 0 0 0 0 0 4.694789 0 010
26 10.25995 0 0 9.531824 0 1.156152 6.604298 0 0 0 0 0 6.346496 0 1.300262 0 1.869395 4.265034



Multi-dimensional data visualization

• In high-dimensions one cannot comprehensively see data 
• Methods for lossless and interpretable visualization of n-D data 
in 2-D are required
• Often multidimensional data are visualized by lossy dimension 
reduction (e.g.,  PCA) or by splitting n-D data to a set of low 
dimensional data (pairwise  correlation plots)
• While splitting is useful it destroys integrity of n-D data and 
leads to a shallow understanding complex n-D data
• An alternative for deeper understanding of n-D data is visual 
representations of n-D data in low dimensions without splitting 
and loss of information is graphs not 2-D points e.g., Parallel and 
Radial coordinates



Example: WBC

[Maszczyk 2008]

• Benign and malignant cancer 
cases overlap

• Interpretation of dimensions  
is difficult. Non-reversible  
lossy methods: 9-D to 2-D



Johnson-Lindenstrauss Lemma

• Only a small number of arbitrary n-D points can be mapped to k-D points of 
a smaller dim k that preserve n-D distances with relatively small deviations

• Reason: the 2-D visualization space does not have enough neighbors with 
equal distances to represent the same n-D distances in 2-D.

• Result: the significant corruption of n-D distances in 2-D visualization



Different Formulations of the Lemma

• Defines the possible dimensions k < n such that for any set of m 
points in Rn there is  a mapping f: Rn → Rk with “similar” distances in 
Rn and Rk between mapped points.  This similarity is expressed in 
terms of error 0 < ε < 1.

• For ε = 0 these distances are equal. For ε=1 the distances in Rk are 
less or equal to   2 S, where S is the distance in Rn. This means that 
distance s in Rk will be in the interval [0, 1.42S].

• In other words, the distances will not be more than 142% of the 
original distance,  i.e., it will not be much exaggerated. However, it 
can dramatically diminish to 0

[Dasgupta 2003]



Theoretical limits: Preserve n-D in 2-D

• Johnson-Lindenstrauss Lemma shows 
that to keep distance errors within  
about 30% for just 10 arbitrary high-
dimensional points, we need over  
1,900 dimensions, and over 4,500 
dimensions for 300 arbitrary points

• Visualization methods do not meet 
these requirements

Dimensions to support ±31% of error (ε=0.1).

16000

14000

12000

10000

8000

6000

4000

2000

0
10 20 30 40 50 60 70 80 90 100 200 300

Dimensions required supporting ± 31% of error ε.

Number of arbitrary
points in high-

dimensional space

Sufficient
dimension with  
formula (3.1)

Sufficient
dimension with  
formula (3.2)_

Insufficient
dimension with  
formula (3.3)

10 1974 2145 1842
20 2568 2791 2397
30 2915 3168 2721
40 3162 3436 2951
50 3353 3644 3130
60 3509 3813 3275
70 3642 3957 3399
80 3756 4081 3506
90 3857 4191 3600
100 3947 4289 3684
200 4541 4934 4239
300 4889 5312 4563



Approaches to Convert n-D data to 2-D data 

• Lossy approach
• Lossy conversion to 2-D  (dimension reduction, 

DR)
• Point to point (n-D point to 2-D point)
• Visualization in 2-D
• Interactive discovery of 2-D patterns in 

visualization
• Lossless approach

• Lossless conversion (visualization) to 2-D (n-D 
data  fully restorable from its visualization)

• Interactive discovery of 2-D patterns on  graphs 
in visualization

n-D data 2-D data &
2-D patterns

n-D data  and 
n-D  patterns

2-D data  & n-D  
patterns



GLC-L Algorithms for Visualization

Given: 4-D point (x1, x2,x3, x4 )=(1,0.8, 1.2, 1)

Algorithm

• 4 coordinate lines at  different angles Q1-Q4

• Values shown as blue lines (vectors)
• Shifting and stacking blue lines
• Projecting the last point to U line
• Do the same for other 4-D points of blue class
• Do the same for 4-D points of red class
• Optimize angles Q1-Q4 to separate classes 
(yellow line)

X1 X2
X3 X41

Q1 Q2 Q3

1
Q4

0.8 1.2

x1 X2
X3 X4

Q1 Q2 Q3 Q4

x3

x2

x4



GLC-L Algorithms for Visualization

X1 X2
X3 X41

Q1 Q2 Q3

1
Q4

0.8 1.2

x1 X2
X3 X4

Q1 Q2 Q3 Q4

x3

x2

x4



239 malignant (red) cases

444 benign (blue) cases

9-D Wisconsin Breast Cancer

• Critical in Medical diagnostics  
and many other fields

• Explanation of patterns and 
understanding patterns

• Lossless visual means 
Reversible/restorable

• Only one malignant (red case)  
on the wrong side



Avoiding Occlusion with Deep Learning on 
WBC data

WBC data samples visualized in GLC-L for  
CNN model with the best accuracy.

Visualization
optimization

Deep Learning
Convolutional Neural  

Network (CNN) on images  
(GLC-L visualization) as input

Numeric 9-DWisconsin
Breast Cancer (WBC)  

Data

Visualized numeric data as downscaled
25x25 pixels images using GLC-L method

Classification accuracy 97.22%
at the level and above published in literature



General Line Coordinates

7-D point D=(5,2,5,1,7,4,1) in
Radial Coordinates.

X1 X2 X3 X4 X5 X6 X7

7-D point D=(5,2,5,1,7,4,1) in Parallel Coordinates

(c) 7-D points F-J in General Line Coordinates that forma
simple single straight line.

(d) 7-D points F-J in Parallel Coordinates that do not form a
simple single straight line.

7-D points in General Line Coordinates with different directions of 
coordinates X1,X2,…,X7 in comparison with Parallel Coordinates.

X1 X2 X3 X4 X5 X6

(a) 7-D point D in General Line Coordinates with straightlines.

X7

X1 X2 X3 X4 X5 X6 X7

(b) 7-D point D in General Line Coordinates with curvilinear
lines.

6-D (5,4,0,6,4,10) point in
In-line Coordinates

.

X1 X2 X3 X4 X5 X6

Two 5-D points of two classes in Sequential In-Line Coordinates.



n-Gon (rectangular) coordinates with 6-D point (0.5, 0.6, 0.9, 0.7,
0.7, 0.1).

X1

X2

X3

X6 0.5

0.6

0.9

1.0
0.0

0.0

X4 0.7

X5
0.7

0.1

(a) Parallel Coordinates display. (b) Circular Coordinates display.

(c) Spatially distributed objects in circular coordinates with two coordinates X5 and X6 used  
as a location in 2-D and X7 is encoded by the sizes ofcircles.

Figure 2.5. Examples of circular coordinates in comparison with parallel coordinates.

(a) Example in n-Gon coordinates with curvi-
linear edges of a graph.

(b) Example in n-Gon coordinates with  
straight edges of a graph.

Figure 2.6 Example of weekly stock data in n-Gon (pen4tag5on)coordinates.

X2

X3

0.50.5

X3

4  

0.3

0.6
X

0.3 X1

X1
0.4

0.2
X2

X5

X6 X4  

0.2

100 0
X3 Wednesday X3 Wednesday

100 0(a) Point A in in 3-Gon coordi-
nates.

(b) Point A in in radial coordi-
nates.

3-D point A=(0.3, 0.7, 0.4) in 3-Gon (triangular) coordinates and in  
radial coordinates.

General Line Coordinates



Type Characteristics
2-D General Line Coor-
dinates (GLC)

Drawing n coordinate axes in 2-D in variety of ways: curved, parallel, unparal-
leled, collocated, disconnected, etc.

Collocated Paired Coor-
dinates (CPC)

Splitting an n-D point x into pairs of its coordinates (x1,x2),…,(xn-1,xn); drawing
each pair as a 2-D point in the collocated axes; and linking these points to form a
directed graph. For odd n coordinate Xn is repeated to make n even.

Basic Shifted Paired
Coordinates (SPC)

Drawing each next pair in the shifted coordinate system by adding (1,1) to the  
second pair, (2,2) to the third pair, (i-1, i-1) to the i-th pair, and so on. More
generally, shifts can be a function of some parameters.

2-D Anchored Paired
Coordinates (APC)

Drawing each next pair in the shifted coordinate system, i.e., coordinates shift- ed  to
the location of a given pair (anchor), e.g., the first pair of a given n-D
point. Pairs are shown relative to the anchor easing the comparison with it.

2-D Partially Collocated
Coordinates (PCC)

Drawing some coordinate axes in 2D collocated and some coordinates not col-
located.

In-Line Coordinates
(ILC)

Drawing all coordinate axes in 2D located one after another on a single straight
line.

Circular and
n-Gon coordinates

Drawing all coordinate axes in 2D located on a circle or an n-Gon one after
another.

Elliptic coordinates Drawing all coordinate axes in 2D located on ellipses.
GLC for linear functions
(GLC-L)

Drawing all coordinates in 2D dynamically depending on coefficients of the
linear function and value of n attributes.

Paired Crown Coordi-
nates (PWC)

Drawing odd coordinates collocated on the closed convex hull in 2-D and even
coordinates orthogonal to them as a function of the odd coordinate.

General Line Coordinates (GLC): 2-D



Type Characteristics
3-D General Line Co-
ordinates (GLC)

Drawing n coordinate axes in 3-D in variety of ways: curved, parallel, unparal-
leled, collocated, disconnected, etc.

Collocated Tripled Co-
ordinates (CTC)

Splitting n coordinates into triples and representing each triple as 3-D point in the
same three axes; and linking these points to form a directed graph. If n mod 3 is  not 0 then repeat the 
last coordinate Xn one or two times to make it 0.

Basic Shifted Tripled
Coordinates (STC)

Drawing each next triple in the shifted coordinate system by adding (1,1,1) to the  second tripple, (2,2,2)
to the third tripple (i-1, i-1,i-1) to the i-th triple, and so on.
More generally, shifts can be afunction of some parameters.

Anchored Tripled Coordinates 
(ATC) in 3-D

Drawing each next triple in the shifted coordinate system, i.e., coordinates shifted  to the location of the
given triple of (anchor), e.g., the first triple of a given n-D
point. Triple are shown relative to the anchor easing the comparison with it.

3-D Partially Collocated 
Coordinates (PCC)

Drawing some coordinate axes in 3-D collocated and some coordinates not collo-
cated.

3-D In-Line Coordinates (ILC) Drawing all coordinate axes in 3D located one after another on a single straight
line.

In-Plane Coordinates (IPC) Drawing all coordinate axes in 3D located on a single plane (2-D GLC embedded to 3-D).
Spherical and
polyhedron coordinates

Drawing all coordinate axes in 3D located on a sphere or a polyhedron.

Ellipsoidal coordinates Drawing all coordinate axes in 3D located on ellipsoids.
GLC for linear func-
tions (GLC-L)

Drawing all coordinates in 3D dynamically depending on coefficients of the linear
function and value of n attributes.

Paired Crown Coordi-
nates (PWC)

Drawing odd coordinates collocated on the closed convex hull in 3-D and even
coordinates orthogonal to them as a function of the odd coordinate value.

General Line Coordinates (GLC): 3-D



X

(a) Collocated Paired Coordinates (b) Shifted Paired Coordinates.
.

6-D point (5,4,0,6,4,10) in Paired Coordinates.

Y

6-D point x=(x,y,x`,y`,x``,y``)=(0.2, 0.4, 0.1, 0.6, 0.4, 0.8) in  
Anchored Paired Coordinates with numbered arrows.

(a) Collocated Paired Coordinates (b) Parallel  Coordinates

State vector x = (x,y,x`,y`,x``,y``) = (0.2, 0.4, 0.1, 0.6, 0.4, 0.8) in  
Collocated Paired and Parallel Coordinates.

Reversible Lossless Paired Coordinates



Reversible lossless  
Paired Coordinates

49

6-D point as a closed contour in 2-D where a 6-D point x=(1,1,  
2,2,1,1) is forming a tringle from the edges of the graph in Paired  

Radial Coordinates with non-orthogonal Cartesian mapping.

X
2

X
4 X

5

6
1 2

1

2

X
3

(x3,x4)
=(2,2)

(1,1)= (x5,x6)

1 2
(1,1)= (x ,x )

X1
X

(a) (b) (c)
n-D points as closed contours in 2-D: (a) 16-D point (1,1,2,2,1,1,2,  
2,1,1,2,2,1,1,2,2) in Partially Collocated Radial Coordinates with  
Cartesian encoding, (b) CPC star of a 192-D point in Polar encoding,
(c) the same 192-D point as a traditional star in Polar encoding.

β

X3X2

X5 X4

X6X7

X X9 8

X11X10

X13X12

X1X16

X15 X 14

6-D point (1, 1, 1, 1, 1, 1) in two X1-X6 coordinate systems (left –
in Radial Collocated Coordinates, right – in Cartesian Collocated  

Coordinates).

4-D point P=(0.3,0.5,0.5,0.2) ) in 4-D Elliptic Paired Coordinates,  
EPC-H as a green arrow. Red marks separate coordinates in the  

Coordinate ellipse.

X3

0.3
X1

X2

X4

0.50.5

0.2

M

CE

A
B

4-D point P=(0.3,0.5,0.5,0.2) ) in Radial Coordinates.



6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-SC1. 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-SC2

Six coordinates and six vectors that represent a 6-D data  
point (0.75,0.5,0.7,0.6,0.7, 0.3)

6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-PC.

6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-CC1

6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-CC2

X1
X2

X5

X 3 X
4

x3

X6

x1 x2

x4
x5 x6

Graph construction algorithms in GLC



Math, theory and pattern simplification  
methodology: Statements
• Statement 1. Parallel Coordinates, CPC and SPC preserve Lp distances for p=1 and 

p=2, D(x,y) =  D*(x*,y*).
• Statement 2 (n points lossless representation). If all coordinates Xi do not overlap 

then GLC-PC  algorithm provides bijective 1:1 mapping of any n-D point x to 2-D 
directed graph x*.

• Statement 3 (n points lossless representation). If all coordinates Xi do not overlap then 
GLC-PC and  GLC-SC1 algorithms provide bijective 1:1 mapping of any n-D point x to 2-D 
directed graph x*.

• Statement 4 (n/2 points lossless representation). If coordinates Xi, and Xi+1 are not 
collinear in each pair (Xi, Xi+1) then GLC-CC1 algorithm provides bijective 1:1 mapping of 
any n-D point x to 2-D directed graph x* with n/2 nodes and n/2 - 1 edges.

• Statement 5 (n/2 points lossless representation). If coordinates Xi, and Xi+1 are not 
collinear in each pair (Xi, Xi+1) then GLC-CC2 algorithm provides bijective 1:1 mapping of 
any n-D point x to 2-D  directed graph x* with n/2 nodes and n/2 - 1 edges.
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1 2 ngiven base n-D point x=(x , x ,,..,x ) and the anchor2-D
point A, the n-D point x is mapped one-to-one to a  
single 2-D point A by GLC-CC algorithm.

■ Statement 9 (locality statement). All graphs that  
represent nodes N of n-D hypercube H are within  
square S

Math, theory and pattern simplification methodology:
Statements

■ Statement 6 (n points lossless representation). If all  
coordinates Xi do not overlap then GLC-SC2 algorithm  
provides bijective 1:1 mapping of any n-D point x to 2-
D directed graph x*.

■ Statement 7. GLC-CC1 preserves Lp distances for
p=1, D(x,y) = D*(x*,y*).

■ Statement 8. In the coordinate system X1,X2,…,Xn 
constructed by the Single Point algorithm with the

(2,4,1,7,3,5)

X1

X5

X2
X4X6

2

1 X3

6-D points (3,3,2,6,2,4) and (2,4,1,7,3,5) in
X1-X6 coordinate system build using point  

(2,4,1,7,3,5) as an anchor.

3

745
(3,3,2,6,2,4)

Data in Parameterized Shifted Paired Coordinates. Blue dots  
are corners of the square S that contains all graphs of all n-D
points of hypercube H for 6-D base point (2,4,1,7,3,5) with

distance 1 from this base point.

(3,5,2,8,4,6)

X1

X5

X2 X4
X6

2

1 X3

3

5 4 7 (2,4,1,7,3,5)

(3,3,2,6,4,4)

(1,5,0,8,2,6)

(1,3,0,6,2,4)
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(a) Data in Parallel Coor-
dinates – non-preattentive

representation.

(b) Data in the Shifted Par-
allel Coordinates - preatten-

tive representation.

(c) Data in the Shifted  
General Line Coordinates-
preattentive representation.

(d) Data in the scaled Paral-
lel Coordinates – preatten-
tive representation

X2 X3 X4 X5 X6

0
X1

3

1

2

X ` 1 X ` 5 X ` 2X ` 6 X ` 4 X ` 3

(a) Original visual rep-
resentation of the two  
classes in the Parallel

Coordinates,

(b)Simplified visual rep-
resentation after the shifting
and reordering of the Paral-

lel Coordinates.

Simplification of the visual representation by the shifting 
and reordering of the Parallel Coordinates

Adjustable GLCs for decreasing occlusion and 
pattern simplification

Non-preattentive vs. preattentive visualizations (linearized patterns): 6-
D point A= (3, 6, 4, 8, 2, 9) in blue, and 6-D point B=(3.5, 6.8, 4.8, 8.5, 
2.8, 9.8) in orange in Traditional, Shifted Parallel Coordinates, and 
GLC



4-D data: representation of prevalence of under-
nourished in the population (%) in

Collocated Paired Coordinates

4-D data: representation of prevalence of undernourished  
in the population (%) in traditional time series (equivalent  

to Parallel Coordinates for time series)

The Global Hunger Index (GHI) for each country measures as,
GHI = (UNN+UW5+MR5)/3,

where UNN is the proportion of the population that is Undernourished (in %),  
UW5 is the prevalence of Underweight in children under age of five (in %), and  
MR5 is the Mortality rate of Children under age five (in %).

2 4

Case Studies: World Hunger data
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– Dark green dot – goal.
– Yellow and light green -- closer to the  

goal point.
– Red arrow -- initial health status.

■ Experiments -- people quickly grasp how  
to use this health monitor.

■ This health monitor is expandable.

■ Two more indicators is another pair of  
shifted Cartesian Coordinates.

– The goal is the same dark green 2-D dot
– Each graph has two connected arrows.

■ Graphs closer to the goal are smaller.

Case Studies: Health Monitoring with PC and CPC
The colors show the progress to the goal.

a) PSPC: The green dot is the  
desired goal state, the red arrow is  
the initial state, the orange arrow is  
the health state at the next moni-
toring time, and the light green ar-

row is the current health state of  
the person.

(b) the same data  
as in (a) in Parallel

Coordinates.

4-D Health monitoring visualization in PSPC (a) and
Parallel Coordinates (b) with parameters: systolic blood

pressure, diastolic blood pressure, pulse, and total choles-
terol at four time moments.

(100, 150, 95, 250)

( 93, 147, 95, 230)
( 80, 127, 68, 200)

(70, 120, 60, 190)
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■ The CPC visualization shows arrows in (Vr,Yr) space of volume Vr and relative main outcome  
variable Yr

■ This is a part of the data shown as traditional time series with time axis.

■ CPC has no time axis. The arrow direction shows time.

■ The arrow beginning is the point in the space (Vr i,Yr i ), and its head is the next time point in  
the collocated space (Vr i+1,Yr i+1 ).

■ CPC give the inspiration idea for building a trading strategy in contrast with time series figure  
without it.

–

–

–

– It allows finding the areas with clusters of two kinds of arrows.

– The arrows for the long positions are green arrows.

– The arrows for the short positions, are red.

– Along the Yr axis we can observe a type of change in Y in the current candle. if Yr i+1>Yr i then  
Yi+1 >Yi the right decision in i-point is a long position opening. Otherwise, it is a short position.

Next, CPC shows the effectiveness a decision in the positions.  

The very horizontal arrows indicates small profit

A more vertical arrows indicates the larger profit.

Case studies: Knowledge Discovery and Machine  
Learning for Investment Strategy with CPC

■ In comparison with traditional time series, the CPC bring the additional knowledge about the  
potential of profit in selected area of parameters in (Vr,Yr) space.

Some examples of arrows which sho5w6 points of

Comparison of two time series:
relative outcome Yr and relative
volume in every one hundred
period.
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Figure 8.16. Pins in 3-D space: two cubes found in (Yr,dMAr,Vr) space with the maximum asymmetry  
between long and short positions.

Figure 8.17. The zoomed cubes with the best asymmetry from Figure 8.16. The upper cube with  
green circles is selected for long positions lower cube with red circles is for short positions. For better

visibility, the viewpoint is changed from Figure 8. 16.

Figure 8. 18. Two determined cubes in Yr-dMAr-Vr space with the maximum asymmetry between  
long and short positions for the new grid resolution.



Lossless Visualization of 48-D and 96-D data

Two stars with identical shape fragments on 
intervals [a,b] and [d,c] of  coordinates.

Samples of some class features on Stars for
n=48.

Samples of some class features on PCs for n=48

Visual Patterns-- combinations of attributes
Examples of corresponding figures: stars (row 1) and PCs lines
(row 2) for five



Twenty 160-D points of 2 classes represented in star CPC with noise
10% of max value of normalized coordinates (max=1) and with standard
deviation 20% of each normalized coordinate.

Twenty 160-D points of 2 classes represented in Radial Coordinates  
with noise 10% of max value of normalized coordinates (max=1) and

with standard deviation 20% of each normalized coordinate.

(a) Initial 100-D points without noise for Class (Hyper-tube) #1 and Class (Hyper-tube) #2

(b) 100-D points with multiplicative noise: circled areas are the same as in upper star.

Figure 6.10. Samples of 100-D data in Star CPC used to make participants familiar with the task.

Twenty 160-D points of 2  
classes represented in  
Parallel Coordinates with  
noise 10% of max value of  
normalized coordinates  
(max=1) and with standard  
deviation 20% of each  
normalized coordinate

Discovering high-
dimensional  
interpretable  
patterns in
160-Dimensions!



Human abilities to discover patterns in high-D data

Nine 170-dimensional points of two classes in Parallel Coordinates

• The expected classifiable dimensions are 
in [160,192] interval for the Radial 
Coordinates

• Due to advantages of Star CPC over Radial 
Coordinates, these limits must be higher 
for Star CPC and lower for Parallel  
Coordinates

• Finding bounds for linear-hyper-tubes  
most likely will be also limits for non-
linear hyper-tubes due to  their higher 
complexity

• Traditional 170-D stars: class “musk” (first 
row) and class “non-musk  chemicals” 
(second row). CPC 170-D stars from the 
same dataset: class  “musk” (third row) 
and class “non-musk chemicals” (forth 
row).



Lossy Methods Revisited: PCA

• Account for variance of data in as few 
dimensions as possible (using linear 
projection)

• First PC is the projection direction 
that maximizes the variance of the 
projected data

• Second PC is the projection direction 
that is orthogonal to the first PC and 
maximizes variance of the projected 
data



PCA can occasionally fail

• Angle has the most information but this is not captured by the basis
• Sometimes most important information is not orthogonal



Lossy Methods Revisited: t-SNE

• Visualizes high-dimensional data in a 2- or 
3-dimensional map

• Better than most techniques at creating a 
single map that reveals structure at many 
different scales

• Particularly good for high-dimensional data 
that lie on several different, but related, 
low-dimensional manifolds.

Example: images of objects from multiple 
classes seen from multiple viewpoints.



Lossy Visualization

(a) PCA, first two principal components
(b) first three principal components, 3D 
PCA.
(c) 2D and (d) 3D visualization of the 
nonlinear reduction  mapping using t-
SNE
(e) 2D and (f) 3D visualization of the 
nonlinear mapping using Laplacian 
eigenmaps



Lossy Visualization in ML Models

• Methods like T-SNE, PCA and others do not preserve all information 
of initial features (they are lossy visualizations of n- D data)

• They convert n interpretable features to 2-3 artificial features that 
have no direct interpretation

• General Line Coordinates is an alternative that preserves all n-D  
information when occlusion/clutter in visualization is suppressed that 
was successfully done in [Kovalerchuk 2014-2019]



Do PCA and t-SNE actually reveal multi-
dimensional relationships?
• MNIST is visualized in t-SNE as clusters colored by 

their associated digit labels so that “those images 
with high similarity in their  original feature space are 
placed close to each other in the 2D/3D space

• In this manner, “one can easily identify and which 
digit images are outliers (and  thus confusing as 
another digit)”

• t-SNE author Maaten warned about such statements-
- t-SNE may not assign meaning, to point densities, in  
clusters. The outlier and dense areas, visible in t-SNE, 
may not be them, in the original n-D space.

• In addition, the 2–D attributes, generated by t-SNE, 
do not have direct domain interpretation



Interpreting Time Series via Reversible 
Methods
• Trends in retrospective time 

series data are relatively 
straightforward to understand

• How do we understand 
predictions of time series in 
data?



Interpreting Time Series via Reversible 
Methods
• Similar to the saliency masks on images, a heatmap can be created 

based on the relevance produced by XAI methods
• Create a visualization with this heatmap enriching a line plot of the 

original time series. Together with domain knowledge, an expert can 
inspect the produced explanation visualizations [Schlegel 2019]



Visualizing Association Rules

Image source: sklearn

• Matrix with rows as Left Hand Side, LHS  itemsets of rules 
and columns as Right Hand  side (RHS) itemsets of rules

• Scalability for many LHS and RHS
• Readability of small cells having many items



(Ahmad 2018)



Visualizing ARules using Parallel Sets

• Approach:
• Discovering Association Rules.
• Deleting dimensions irrelevant to AR.
• Feeding rules to two coordinated rule visualizations (called  

ARTable and ParSets),

• User interactions
• Visually explore rules in ARTable
• Find interesting rules, dimensions, and categories in ARTable
• Create and optimize the layout of ParSets
• Validate interesting rules
• Explore details of rules in ParSets using domain knowledge

After

Source Visualization

Before

https://ars.els-cdn.com/content/image/1-s2.0-S2468502X1930021X-mmc1.mp4


Folded Coordinate Decision Tree (FC-DT)

(a) Traditional visualization of WBC data
decision tree. Green edges and nodes in-
dicate the benign class and red edges and
nodes indicate the malignant class.

(b) DT with edges as Folded Coordinates in
disproportional scales. The curved lines are
cases that reach the DT malignant edge with
different certainties due to the different dis-
tances from the threshold node.



iForest: Interpreting Random Forests via Visual 
Analytics
Making sense of Random Forests



iForest



TreeExplainer for Tree Based Models

• The polynomial time algorithm to 
compute optimal explanations 
based  on game theory

• An explanation that directly 
measures local feature interaction 
effects.  Tools for understanding 
global model structure based on 
combining  local explanations of 
each prediction

• TreeExplainer matches human 
intuition across a benchmark of 12 
user  study scenarios Simple visualization with Local explanations based on

TreeExplainer to understand global model structure
[Lundberg 2019]



Rule Matrix

RuleMatrix: Visualizing and Understanding Classifiers using Rules



Brief overview of Visualization 
Methods in Deep Learning



Understanding Deep Learning via 
Generalization Analysis
Empirical observations
• Convolutional networks for image classification trained with stochastic 

gradient methods easily fit a random labeling of the training data.
• It occurs even after replacing the true images by completely unstructured 

random noise.
• Here the learning must be impossible and should show up during training, 

e.g., by not converging or slowing down.
Theoretical results
• Large neural networks can express any labeling of the training data.
• Theorem: There exists a two-layer neural network with 2n+d weights that 

can represent any function on a  sample of size n in d dimensions.
• These models are in principle rich enough to memorize the training data.



Understanding Deep Learning via 
Generalization Analysis
• Explanation for such accurate models 

by known heatmap activation methods 
can be constructed, but what will be its  
value?

• To distinguish it from a meaningful 
explanation we need to analyze the 
generalization process and errors  
beyond training data.

• How to distinguish between the models 
trained on the true labels that are 
potentially explainable and models 
trained  on random labels (high 
generalization error) that should not be 
meaningfully explainable?



Activation maximization (AM)

• Activation maximization is an 
analysis framework that searches for 
an input pattern that produces a 
maximum model response for a 
quantity of interest

• Response of individual units in the 
network. Like the analysis of 
individual neurons in the brain by 
neuroscientists, this approach has 
limitations 

[Berkes 2006, Erhan 2009, Simonyan 2013]

Activation maximization applied on MNIST. 



Activation patterns of individual hidden nodes

• LSTMVis: Interactive  exploration of the learnt behavior of hidden  nodes
• A user selects a phrase, e.g., "a little prince,"  and specifies a threshold the 

system
• shows hidden nodes with activation  values greater than the threshold and
• finds other phrases for which the same  hidden nodes are highly activated.
• Given a phrase in a document, the line  graphs in the top panel visualize 

the  activation patterns of hidden nodes  over the phrase
• Several other works with a similar idea -- activation and heatmap.

[Kahng 2018]



LSTMVis System: Open questions

• In the nearest neighbor 
explanation assumes the  
most similar case. No 
explanation of why  the 
activation makes sense

• Where are relations between 
salient element is  captured in 
this visualization?

• How to measure that the 
explanation is right?

• Visual tools are limited by 
Heatmap and  Parallel 
coordinates



Sensitivity Analysis

• Identify the most important input features based on the model's 
locally evaluated gradient or some other local measure of variation

• The most relevant input features are those to which the output is 
most sensitive

• Sensitivity Analysis does not produce an explanation of the function 
value f(x) itself, but rather a variation of it i.e., what makes this image 
more/less a car?”, rather than the more basic question “what makes 
this image a car?”. 

• Example: Image-specific class saliency map, highlighting the areas of the given 
image, discriminative with respect to the given class 



Sensitivity Analysis: Example

• Sensitivity analysis applied to a convolutional DNN trained on MNIST, 
and resulting explanations (heatmaps) for selected digits

• Heatmaps are spatially discontinuous and scattered, and do not focus 
on the actual class-relevant features

• This inadequate behavior can be attributed to the nature of sensitivity 
analysis



Decision Trees for Deep Learning Models

• Learn a decision tree, which 
clarifies the specific reason for 
each prediction made by the CNN 
at the semantic level

• Decision tree decomposes feature 
representations into elementary 
concepts of object parts 

• The decision tree shows which 
object parts activate which filters 
for the prediction and how much 
each object part contributes to the 
prediction score 

[Zhang 2019]



Layer-wise relevance propagation (LRP)

• Technique for explaining predictions
• The LRP technique is rooted in a 

conservation principle, where each neuron 
receives a share of the network output, and 
redistributes it to its predecessors in equal 
amount, until the input variables are reached

• For LRP to produce good explanations, the 
number of fully connected layers should be 
kept low, as LRP tends for these layers to 
redistribute relevance to too many lower-
layer neurons (loose selectivity)

[Bach 2015]



Learning deep features

• Challenge: Scene recognition performance 
is lower than that for object recognition

• Reasons: Current deep features trained 
from ImageNet are not sufficiently 
competitive

• Approach: Methods to compare the 
density and diversity of  image datasets

• CNN to learn deep features for scene 
recognition

• Heatmap Visualization of the CNN layers’ 
responses  to show differences in the 
internal representations  of object-centric 
and scene-centric networks.

[Zhou 2014]



Visualization of Image Features in Heat Maps

• CIFAR-10 classification benchmark  problem 
is to classify RGB 32x32 pixel images across 
10 categories

• CIFAR-10 is a multi-layer network with  
alternating convolutions and  nonlinearities 
followed by fully  connected layers and 
softmax classifier

• 1M learnable parameters  19.5M multiply-
add operations to compute inference on a 
single image

[Montavon 2018]



• Sensitivity heatmaps (local explanations) measure  
change of the class when specific pixels are 
changed  based on partial derivatives. Applicable 
to architectures with differentiable units

• Deconvolution method (“autoencoder”) applies a  
convolutional network g to the output of another  
convolutional network f. Network g “undoes” f

• Layer-wise Relevance Propagation (LRP) exactly  
decomposes the classification output f(x) into pixel  
relevancies by observing the layer-wise evidence 
for  class preservation (conservation principle) 
Applicable to generic architectures (including with  
non-continuous units) -- does not use gradients

Comparison of the three 
heatmap computations

[Samek 2017]



Example: Heat maps visualization and explanation 
of deep learning for pulmonary tuberculosis

Left: Chest radiograph with pathologically 
proven  active TB.

Right: The same radiograph with a heat
map overlay of a strongest activations
from the 5th convolutional layer from
GoogLeNet-TA classifier. The red and light
blue regions in the upper lobes -- areas
activated by the deep neural network.
(areas where the disease is present) The
dark purple background -- areas that are
not activated.



Generative Adversarial Networks (GANs)  
Visualization
• Visualization and  understanding of 

GANs is largely missing.
• How does a GAN represent our visual 

world  internally?
• What causes the artifacts in GAN 

results?
• How do architectural choices affect 

GAN learning?



GANs Visualization

• A framework to visualize and 
understand GANs at  the unit, object, 
and scene level

• Step 1: identify interpretable units 
closely related to object concepts with 
a segmentation-based  network 
dissection.

• Step 2: quantify their causal effect by 
measuring  interventions to control 
objects in the output

• Step 3: examine the contextual 
relationship  between these units and 
their surrounding by  inserting the 
discovered objects into new images

[Bau 2018]



Explanatory Graphs

• Represents the knowledge hierarchy hidden 
in conv-layers of a CNN

• The explanatory graph has multiple layers. 
Each graph layer corresponds to a specific 
conv-layer of a CNN

• Each filter in a conv-layer may represent 
the appearance of different object parts

• Think of these as compression of feature 
maps of conv-layers

• Just like a dictionary, each input image can 
only trigger a small subset of part patterns 
(nodes) in the explanatory graph

[Zhang 2018] 



Deep Visual Explanations



Concept Activation Vectors (CAV)

• Given a set of examples representing a concept of human interest, 
find a vector in the space of activations of layer L that represents this 
concept

• To find such a vector consider the activations in layer L produced by 
input examples that in the concept set versus random examples 



Limits of Visual Interpretability in 
Deep Learning



Visual Methods for Interpretability in Deep 
Learning

[Samek 2017]



Are the concepts discovered by deep learning 
explainers real?
• No distinction between individual high-level unit ‘concepts’ and 

random linear combinations of hig-level unit ‘concepts’
• It is the space of relations rather than the individual units that 

contains the semantic information in network?

[Szegedy 2014]



Most methods for explainability in deep 
learning are incomplete
• Most explanations in deep learning are implicit and incomplete

requiring a human giving a meaning to salient/dominant elements
• In the mast example a human recognizes a mast in these pixels. In 

addition, this explanation can be local and case specific.  In the boat 
example, another boat in the same image has no mast and requires 
its own explanation to be recognized as a boat



Insights from Adversarial Learning

• What does adversarial learning reveal about what deep learning 
models are learning?

• Humans impose semantics on ML models



When a panda is a gibbon

Classified as panda Small adversarial noise Classified as gibbon



Behold the Ostriches!



Hidden layers and Semantic Hierarchy

• The success of DL is not just because of 
“mathematics but also on physics, which 
favors certain classes of exceptionally 
simple probability distributions that deep 
learning is uniquely suited to model”

• Given a multivariate polynomial and any 
generic non-linearity, a neural network 
with a fixed size and a generic smooth 
activation function can indeed 
approximate the polynomial highly 
efficiently

• Success of deep learning possibly related 
to hierarchical and compositional 
generative processes in physics 

[Lin 2017]



Information Bottleneck

• Information Bottleneck: A distortion function that measures how well 
Y is predicted from a compressed representation T compared to its 
direct prediction from X

• “error back-propagation, pushes the layers of any deep neural 
network - one by one - to the information bottleneck optimal tradeoff 
between sample complexity and accuracy, for large enough problems. 
This happens in two distinct phases”

• The first, the network memorizes training examples with a lot of 
irrelevant details with respect to the labels

• The second phase the layers "forget" irrelevant details of the inputs, 
which dramatically improves the generalization ability of the network 

[Tishby 2000, Shwartz-Ziv 2017] 



Information Bottleneck

[Tishby 2000, Shwartz-Ziv 2017] 



Data quality and Generalization

• A common method of combining 
results of  Deep Learning (DL) from 
images with visualization is 
discovering classification model for  
images using a DL algorithm, 
identifying informative deep 
features

• Visualizing identified deep features 
on  the original image.

• Issue – Are visualized features 
always  explainable?

[Gargeya 2017]



Data quality and Generalization

• If an image has a bit of blur or a 
dark area, the system will reject it

• Clinics in the study often 
experienced slower and less 
reliable connections. In one clinic, 
the internet went out for a period 
of two hours during eye screening, 
reducing the number of patients 
screened from 200 to only 100.

• Fewer people in this case received 
treatment because of an attempt 
to leverage this technology



User-centric Views of 
Interpretability of Visual Methods



What is User Centric Interpretability?

• The participation of end users in the design of machine learning tools 
is imperative - to better understand how the end users will utilize the 
output components 

• The notions of interpretability that the designer and the user have 
may be different

• In many cases the user’s expectation of Interpretability or 
explainability are centered on actionability 



The Problem of Ground Truth

• Data may not be of good quality because 
experts may not agree on definitions of 
labels e.g., diagnosis in radiology

• Requires further follow-up, pathologic 
diagnosis, or clinical outcomes to achieve 
ground truth 

• It is estimated that 2%–20% of radiology 
reports contain demonstrable errors 

[Raghu 2019, Willemink 2020]

For the top image, all doctors agreed that 
the grade should be 1, while there was a 
significant spread for the bottom image 



Interpretations are often Incomplete

• How do we make sense of cases where it is possible to explain a 
model without completely understanding it?

• Can we use black-boxes to understand black-boxes?
• What does it mean for an explanation to be complete?
• Many Examples from the History of Science



Kepler’s Laws of Planetary Motion

• Kepler law’s (1619) provided a elliptic mathematical approximation of 
planetary motions but not a why explanation for it

• Newton’s theory of gravitation provided an explanation almost 70 
years later (1687)



Nobody Understands Quantum Mechanics!

In this Feynman diagram, an electron (e⁻) and a 
positron (e⁺) annihilate, producing a photon (γ, 
represented by the blue sine wave) that becomes 
a quark–antiquark pair (quark q, antiquark q)̄, 
after which the antiquark radiates a gluon (g, 
represented by the green helix).

What does it mean for something to be a particle 
and wave at the same time?



Why do Saliency Based Methods Work

• Visual Summarization
• Attenuation to human gaze
• Low cognitive overload
• Plausible justification



When Saliency does not work

• What is the model learning when it learns lipstick?



When Saliency does not work

• Not always possible to extract semantics from feature maps 



Human vs. Algorithmic semantics revisited

• Better performing DL models have higher proportions of deep 
neurons highly predictive  of human gaze

• The predictive neurons are attuned to clear semantic categories such 
as animals (dogs,  cats),objects (motorbike, ball) and parts (head, 
hair)

• This hints that saliency, as experienced by humans, likely involves 
high-level world  knowledge in addition to low-level perceptual cues

• Computational approach to improve DL: minimizing the distance 
between the predicted  saliency maps and the ground truth recorded 
by human gaze

[He 2018, Cornia 2018]



What needs to be interpretable when we 
interpret ML models
• Interpretability is a system wide phenomenon, features, parameters, 

and even insight delivery must be interpretable
• Satisfysing is needed rather than always having model fidelity
• “All models are wrong. Some models are useful.” - Box
• Interpretability often does not require completeness
• A satisfactory explanation of the decision process of the underlying 

model is often required



Systems view of interpretability

Features Algorithm Model Parameters Model

Cognitive Capacity

Domain Knowledge
Each element constituent of the solution process 
needs to be explainable for the solution to be 
truly explainable [Lipton 2016]

AI Solution User

Explanation Granularity



Operationalizing Interpertable ML

Only a small fraction of real-world machine learning systems actually constitutes 
machine learning code [Sculley 2015].



Open Problems and Current 
Research Frontiers



Explanation Fidelity in Visual Methods

• Many, if not most, explanations are wrong, while some explanations 
are useful. Requiring absolute fidelity in interpretable ML is 
unwarranted, given the complexity of models involved

• What are the “good enough” models that allow debugging? Does the 
explanation capture the space of phenomenon to be explained?

• The right explanation is not necessarily the ‘correct` explanation. 
Context and use cases determine what level of fidelity is required for 
the explanations 



Right for the Right Reasons Model

• Models can be right for the wrong reasons [Ross 2017]

• Use domain knowledge to constrain explanations
• Training models with input gradient penalties

[Lakkaraju, Bach & Leskovec, 2016] 



Evaluation of visual methods 

• Comparison of three heatmaps for digit ‘3’.
• L: The randomly generated heatmap – no  interpretable information
• C: The segmentation heatmap – shows the  whole digit without relevant 

parts, say, for  distinguishing ‘3’ from ‘8’ or ‘9’.
• R: A relevance heatmap shows parts of the image used by the classifier.
• Reflects human intuition on differences  between ‘3’, ‘8’ and ‘9’ and other 

digits
[Samek 2017]



Domain vs. non-Domain validation

• How do we validate explanations if complete fidelity is not required?
• The interpretation must make sense within the ontology of the 

domain
• Outside of the domain, the method needs to operate within the 

constraints imposed by formal methods when applicable
• Validation is a domain focused question, but can one create cross-

domain general methods for validation?



Cognitive Limitations

• Machine Learning is used in problems where the size of the data 
and/or the number of variables is too large for humans to analyze

• What if the most parsimonious model is indeed too complex for 
humans to analyze or comprehend?

• Ante-Hoc explanations may be impossible and post-hoc explanations 
would be ‘incorrect’

• "[Humans] make a decision first, and then you ask, and then they 
generate an explanation and that may not be the true explanation.”
– Peter Norvig



Cross-Domain Pollination

• Case study: WBC data with the Collocated Paired Coordinates (CPC-R) 
algorithm,  for converting non-image data to images, and CNN 
algorithms for discovering the classification  model in these images.

• Each image represents a single WBC data case, as a set of squares 
with a different level  of intensities and colors

• The CPC-R algorithm is a modification of Collocated Paired 
Coordinates (CPC) algorithm

• The CPC-R algorithm, instead of connecting pairs (x1,x2) by arrows, 
uses the grey scale intensity from black for (x1,x2) and very light grey 
for (xn-1,xn) for cells. Alternatively, intensity of a color is used. This 
order of intensities allows full restoration



Cross-Domain Pollination

• Figure (a) shows the basic CPC-R image design and Figure (b) shows a more 
complex design of images, where a colored  CPC-R visualization of a case is 
superimposed with mean images of the two classes, which are put side by side, 
creating  double images.

• The advantage of CPC-R is in lossless visualization of n-D cases, and the ability to 
overlay them using heatmap with  salient points discovered by the CNN model, 
for model explanation

(a) 10-D point (8, 10, 10, 8,
7,10, 9,7,1,1) in CPC-R.

(b) Visualization in colored CPC-R of a case superim- posed 
with mean images of two classes put side by side.

CPC-R visualization of non-image 10-D points.
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6-D point (5,4,0,6,4,10) in Collocated Paired Coordinates.
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Explanations are only as good as the model

• If there are varying degrees of fidelity in the interpretation then how 
do we add guards in implementation of interpretable models in the 
real world?

• Examples where the performance of the expert declines after results 
from a DL system are shown to them

• Users of ML systems are tempted to doubt their own judgement 
when information from a decision support system is shown



How to deal with extremely complex models

• What should explanation for very complex model look like?



Future Directions

• Creating simplified explainable models with prediction that humans can 
actually  understand.

• “Downgrading” complex Deep Learning models for humans to understand 
them.

• Expanding visual and hybrid explanation models.
• Further developing explainable Graph Models.
• Further developing ML model in First Order Logic (FOL) terms of the 

domain ontology.
• Generating models with the sole purpose of explanation.
• Post-training rule-extraction.



Future Directions

• Expert-in-the-loop in the training and testing stages with auditing models 
to check generalizability of  models to wider real-world data.

• Rich semantic labeling of a model’s features that users can understand.
• Estimating the causal impact of a given feature on model prediction 

accuracy.
• Using new techniques such as counter-factual probes, generalized additive 

models, generative  adversarial network technique for explanations.
• Further developing heatmap visual explanations of CNN by Gradient-

weighted Class Activation  Mapping and other methods with highlighting 
the salient image areas.

• Adding explainability to DL architectures by layer-wise specificity of the 
targets at each layer
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